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Motivation

When models are trained on synthetic datasets (source domain      ), the domain gap to real data (target 

domain     ) typically leads to decreased performance during inference.

Transfer Learning | Domain Generalization and (Continuous) Unsupervised Domain Adaptation 2

Training Inference

There are many methods to deal with this domain gap:

• Some aim at training a network to be robust without any adaptation processes

• Some adapt the mode with unlabeled samples from the target domain during training

• Some adapt the target data or the network parameters during inference



Different Task Definitions
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Here, source domain representations
are employed, otherwise the methods
are „source-free“ 
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Domain Generalization (DG)
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ResNet101-based models | Source:

our (strong) baseline

only the recent WildNet
improves on all datasets…

Auxilliary
Domains

mIoU (%) on Mean
(CS, MV, BDD)

DRPC° [1] ImageNet 42.5 38.0 38.7 - 39.8

FSDR°[2] ImageNet 44.8 43.4 41.2 - 43.1

FSDR°[2] ImageNet 44.8 36.7 34.1 20.8 38.5

WildNet°[3] ImageNet 44.6 47.1 41.7 - 44.5

Naive 
Aggregation Synthia 41.5 46.7 38.7 34.2 -42.3

IBN-Net [4] - 37.1 39.6 36.0 28.2 37.6

Color Aug. (CA) - 44.0 47.2 38.6 31.7 43.3

SAN+SAW° [5] - 45.3 40.8 41.2 - 42.3

Baseline - 41.0 46.0 39.2 32.1 41.5

Method

DG checkpoint selection
often performed on *each* 
of the target datasets!

green: better than baseline | red: worse than baseline



Unsupervised Domain Adaptation (UDA)
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All domain adaptation approaches improve the mIoU on the target domain

Performance w/o adaptation varies strongl among the publications (~33% … ~41%)
(This is also the base for DG methods)

DACS, IAST, and SAC perform well, all following an elaborate multi-step training process

ResNet101-based model

w/o
adaptation

with adapation

AdaptSegNet° [6] 36.6 42.4

DACS° [7] 32.9 52.1

IAST° [8] 35.6 52.2

ADVENT° [9] - 45.5

SAC° [10] 40.8 53.8

mIoU (%) on

(→CS)
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Continuous UDA
ResNet101-based models | Source:

Task Source-
Free

mIoU (%) on Mean
(CS, MV, 

BDD)

- yes Baseline 41.0 46.0 39.2 32.1 39.6
Source-Free 

UDA yes UBNA  [11] (→CS)  29.2 33.3 29.1 19.8 27.9

Continuous UDA yes CBNA [12] 20.4 16.4 14.2 11.1 15.5

Continuous UDA no Online Freq. Domain 
Style Transfer
(OFDST) [13] 

43.1 45.9 40.3 32.9 40.5

- Yes Baseline 33.0 38.0 37.0 22.1 32.5

Source-Free 
UDA Yes UBNA  [11] (→CS) 38.6 33.2 33.4 20.8 31.5

Continuous UDA Yes CBNA [12] 34.9 39.5 33.5 28.3 34.1

Continuous UDA No OFDST [13] 38.5 37.3 37.4 24.2 34.4
6
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UDA vs. Source-Free UDA
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Task Method
mIoU (%) on

- Baseline (#) 41.0 46.0 39.2 32.1

UDA

SAC [10]► (→CS) 53.8 48.9 40.2 35.6

SAC [10] (→MV) 49.6 51.3 45.3 39.7

SAC [10] (→BDD) 45.8 46.4 44.9 36.5

SAC [10] (→ACDC) 41.1 44.7 38.5 36.6

- Baseline 33.0 38.0 37.0 22.1

Source-
Free 
UDA

UBNA  [11] (→CS) 38.6 33.2 33.4 20.8

UBNA  [11] (→MV) 35.7 43.1 37.3 27.2

UBNA  [11] (→BDD) 35.9 36.9 35.8 22.4

UBNA  [11] (→ACDC) 36.0 43.4 37.3 28.3

ResNet101-based model (DeepLabv2) (if #: BN statistics during GTA5 training frozen)

When adapted to MV, SAC generalizes better than when adapted to CS.

SAC performs adaptive batch normalization
(ABN) during pre-training with a source-only
loss.
The loss is only computed on the source
samples, but the minibatches consist of
source and target samples.
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Transformer-Based UDA
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Backbone Method
mIoU [%] on Mean

mIoU

ResNet101

w/o adaptation
(DeepLabv2) 41.0 46.0 39.2 32.1 39.6

SAC [10]► (→CS) 53.8 48.9 40.2 35.6 44.6

MiT-B5

w/o adaptation
(SegFormer [14]) 44.5 49.8 42.6 36.8 43.4

DAFormer [15] (→CS) 67.1 60.2 52.5 44.7 56.1

ResNet101 DeepLabv2 69.3 50.3 41.3 37.8 49.7

MiT-B5 SegFormer [14] 76.6 61.0 53.8 53.0 61.1

+11.2 % rel.

+29.3 % rel.

still 
a gap

ResNet101- and MiT-B5-based models

Overall, the UDA methods SAC [5] and even more DAFormer [14] are also strong DG methods

There is only a 28% (relative) performance gap to target-only training …

0%

28%
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Source 
Domain

mIoU (%) on
Mean

69.3 50.3 41.3 37.8 49.7

61.9 67.2 53.7 50.2 58.2

53.2 53.0 55.3 41.7 50.8

48.1 47.9 39.5 59.7 48.8

strong UDA / DG methods reduce the
synth-to-real ga… But not completely.

UDA SAC [10]►
(GTA5 →CS) 53.8 48.9 40.2 35.6 44.6

UDA SAC [10] 
(GTA5 →MV) 49.6 51.3 45.3 39.7 46.5

67.1 60.2 52.5 44.7 56.1

WildNet [2] DG 45.8 47.1 41.7 - -

Cont. UDA 
[13] (GTA5→) 43.1 45.9 40.3 32.9 40.5

41.0 46.0 39.2 32.1 39.6

MV is a nicely generalizing real dataset!

continuous methods still need more development

source-only baseline

Domain Generalization vs. (Continuous) UDA 

single DG methods are still a interesting research area

UDA DAFormer [15]
(GTA5 →CS)



Conclusions

Recent UDA methods achive very stong performance (DAFormer[]), not only on the target domain, but on 

multiple unseen domains.

DG does not reach UDA performance, but it outperforms soure-only training and np target data is

necessary to train the network.

Source-free Uda can be used to adapt a network after training, but the training process is important

(frozen BN statistics)

Continuous UDA is a fresh field of research and first small perofrmanecs improvements can be achieved.
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KI Delta Learning ist ein Projekt der KI Familie. Es wurde aus der 
VDA Leitinitiative autonomes und vernetztes Fahren initiiert 

und entwickelt und wird vom Bundesministerium für Wirtschaft 

und Klimaschutz gefördert.

Jan-Aike Termöhlen | TU Braunschweig

j.termoehlen@tu-bs.de
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