

Final Event | March 9, 2023

Self-Supervised 3D Human Pose Estimation for Autonomous Driving

Arij Bouazizi

Motivation

3D Trajectory Prediction [Ivanovic et al., ICRA2020]

Action & Gesture Anticipation [Wiederer et al., IROS2020]

Motion Capture Systems [Joo et al., TPAMI2016]

Multi-view Supervision

Didactics | Self-Supervised 3D Human Pose Estimation for Autonomous Driving

Self-supervised 3D Human Pose Estimation for Indoor Environments

Self-supervised Single-Frame 3D Human Pose Estimation

Self-supervised Single-Frame 3D Human Pose Estimation

Multi-view Single Frame 3D Human Pose Estimation for Indoor Environments

Self-supervised Single-Frame 3D Human Pose Estimation

S = C

Input Triangulation Loss:

$$\mathcal{L}_{in} = \sum_{s=1}^{S} \sum_{c=1}^{C} \| \rho_{w \to c}(\hat{\mathbf{Y}}_{in}^{s}) - f_{\theta}(\hat{\mathbf{y}}_{c}^{s}) \|^{2}$$
$$\mathcal{L}_{proj} = \sum_{s=1}^{S} \sum_{c=1}^{C} \sum_{c'=1}^{C} \| \hat{\mathbf{y}}_{c}^{s} - \tau_{c}(f_{\theta}(\hat{\mathbf{y}}_{c'}^{s})) \|$$

Projection Loss:

$$\mathcal{L}_{proj} = \sum_{s=1}^{S} \sum_{c=1}^{C} \sum_{c'=1}^{C} \| \hat{\mathbf{y}}_{c}^{s} - \tau_{c}(f_{\theta}(\hat{\mathbf{y}}_{c'}^{s})) \|$$

Consistency Loss:

$$\mathcal{L}_{con} = \sum_{s=1}^{S} \sum_{c=1}^{C} \sum_{\substack{c'=1\\c\neq c'}}^{C} \| f_{\theta}(\hat{\mathbf{y}}_{c}^{s}) - \rho_{c' \to c}(f_{\theta}(\hat{\mathbf{y}}_{c'}^{s})) \|$$

Output Triangulation Loss:

$$\mathcal{L}_{out} = \sum_{s=1}^{S} \sum_{c=1}^{C} \parallel \rho_{w \to c}(\widetilde{\mathbf{Y}}_{out}^{s}) - f_{\theta}(\hat{\mathbf{y}}_{c}^{s}) \parallel^{2}$$

Self-supervised Temporal 3D Human Pose Estimation

Multi-view Temporal 3D Human Pose Estimation for indoor Environments

Didactics | Self-Supervised 3D Human Pose Estimation for Autonomous Driving

Qualitative Results

Qualitative Results

Qualitative Results

Didactics | Self-Supervised 3D Human Pose Estimation for Autonomous Driving

>> Weakly-supervised 3D Human Pose Estimation for Autonomous Driving

Related Work

Cao et al. 2018 [1]

- Open Pose
- First multi-person realtime 2D pose detection system

Kim et al. 2018 [2]

- Energy term minimization
- Strong dependency on labels and sensors
- Evaluation on 3D MOCAP data

Zheng et al. 2022 [3]

- Deep learning based
- Multi-modal approach
- Moving vehicle
- 3D pose estimation via weak supervision

Didactics | Self-Supervised 3D Human Pose Estimation for Autonomous Driving

<u>GT</u>

Network

Internal

 $Loss_{3D}$

Weakly-supervised Multimodal 3D Human Pose Estimation

Weakly-supervised Multimodal 3D Human Pose Estimation

- Qualitative Results of the weakly-supervised Approach
 - Comparison between keypoint lifting, LIDAR-based regression and sensor-modality fusion

Conclusion

Self-supervised Training Strategy 3D Human Pose Estimation in Indoor Environments

- Multiple view Supervision without 3D Ground-Truth.
- Single-Frame and Temporal Approaches
- State-of-the-art results on public benchmarks
- Competitive performance to fully-supervised approaches and generalization in the wild.

Self-supervised Training Strategy 3D Human Pose Estimation for Autonomous Driving

- Weakly-supervised Approach
- Multimodal Approach (Camera, LIDAR)
- Future work:

References

- [1] Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2016). PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. *Proceedings 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January*, 77-85. https://doi.org/10.48550/arxiv.1612.00593
- [2] Kim, W., Ramanagopal, M. S., Barto, C., Yu, M.-Y., Rosaen, K., Goumas, N., Vasudevan, R., & Johnson-Roberson, M. (2018). *PedX: Benchmark Dataset for Metric 3D Pose Estimation of Pedestrians in Complex Urban Intersections*. http://arxiv.org/abs/1809.03605
- [3] Zheng, J., Shi, X., Gorban, A., Mao, J., Song, Y., Qi, C. R., Liu, T., Chari, V., Cornman, A., Zhou, Y., Li, C., & Anguelov, D. (2021). Multi-modal 3D Human Pose Estimation with 2D Weak Supervision in Autonomous Driving. *IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops*, 2022-June, 4477-4486. https://doi.org/10.48550/arxiv.2112.12141

Arij Bouazizi | Mercedes-Benz AG arij.bouazizi@mercedes-benz.com

KI Delta Learning is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

www.ki-deltalearning.de 🄰 @KI_Familie in KI Familie

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag