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Effect of Domain Switch
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Domain Adaptation

• Source Domain: Data with annotation for training present

• Target Domain: No annotations present
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A Low-Complexity Domain Adaptation Approach 
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Generalizing Source Only Training
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• Strong data augmentation

• Cropping, Color Jitter and gaussian blurring

• Sampling: Zhu et. al.:“Improving semantic segmentation via video propagation and label relaxation” 2019

• Crops are generated with an uniform class distribution

Ø More weight to seldom classes but no overfitting due to strong augmentation

Ø Less weight to often classes less overfitting on the simple synthetic data



Generalizing Source Only Training
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• When trained on GTA5 and tested on Cityscapes

• With random cropping and horizontal flipping: 25.5% mIoU

• With additional color Jitter and gaussian blurring: 38.8% mIoU

• When additionally 50% of the epoch is sampled uniform: 41.4% mIoU

• When additionally 100% of the epoch is sampled uniform: 44.5% mIoU



Semantic Self-Supervision

• Goal: Source and target domain class distribution alignment in pre-logit feature space

• Approach: Cluster pre-logit feature space to “class prototypes”

• However: For target domain the corresponding feature representation is not known

• Assumption: The closest class prototype is the correct one
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Semantic Self-Supervision
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Determine class centroids
on source domain

Compute cosine similarity
between target representations 

and class centroids

Minimize the entropy 
in the similarity matrix

• Clustering is inspired by K. Saito et. al. “Universal Domain Adaptation through Self Supervision” 2020 
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Self-Training
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Domain Adaptation

• Half of the batch from labeled source domain and half from the target domain 

• We apply our clustering loss here, as well 

Ø Observation: The self-supervision improves the self-training 
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The Iterative Model
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• Step1: Training on source domain yields first model  



The Iterative Model
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• Step1: Training on source domain yields first model  

• Step2: Create pseudo labels with the model 



The Iterative Model
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• Step1: Training on source domain yields first model  

• Step2: Create pseudo labels with the model 

• Step3: Reinitialize the model and re-train on source and target domain

• The self-training and the self-supervision are performed on the target domain



The Iterative Model
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• Step1: Training on source domain yields first model  

• Step2: Create pseudo labels with the model 

• Step3: Reinitialize the model and re-train on source and target domain

• The self-training and the self-supervision are performed on the target domain

• Step4: Repeat the process



The Iterative Process (GTA5 to Cityscapes)

• Synergy between self-training and self-supervision 

• The self-training converges after 4 iterations

• Additional semantic clustering: Improvement for 15 steps

• Also the gradient is steeper

• Interpretation:

• The self-training aligns the class distributions

• Aligned class distributions lead to an improved clustering

• The improved clustering achieves better pseudo labels

• Better pseudo labels again lead to an improved clustering

Ø Synergistic effect
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Quantitative Evaluation: GTA5 to Cityscapes 
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Approach MIoU

Source DLv2 36.6%

AdapSeg 41.4%

CyCada 42.7%

CLAN 43.2%

APODA 45.9%

PatchAlign 46.5%

ADVENT 45.5%

BDL 48.5%

CBST 45.9%

MRKLD 47.1%

FADA 50.1%

CAG UDA 50.2%

SegUncertainty 50.3%

CLST 51.6%

SAC 53.8%

Coarse2Fine 56.1%

ProDA 57.5%

Source aug 38.8%

Self-Training 49.2%

Ours 56.3%

• Our model is low in complexity compared to state of the art

• State of the art combines different loss functions and stages

• E.g. ProDA e.g. has got:

• Three training stages

• Combines: Self Training, Self Supervision, adversarial training …

Ø High complexity comes with need for finetuning

Ø Our model is low in complexity



Qualitative Results

• Published at „Conference on Robot Learning 2022“ 
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