

Final Event | March 09, 2023

A Benchmark and a Baseline for Robust Multi-view Depth Estimation

Philipp Schröppel

Outline

1. Introduction

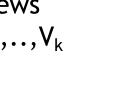
task description, related work, motivation

- 2. Robust Multi-view Depth Benchmark objective, test sets, evaluation settings, results
- 3. Robust MVD Baseline Model

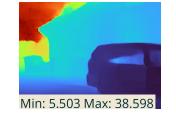
overview, qualitative results

- 4. robustmvd Framework
- 5. Summary

Introduction Multi-view Depth Estimation



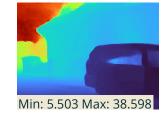
Keyview V_0


Introduction Multi-view Depth Estimation

Keyview V₀

Depth map for the keyview

Source views V₁,...,V_k



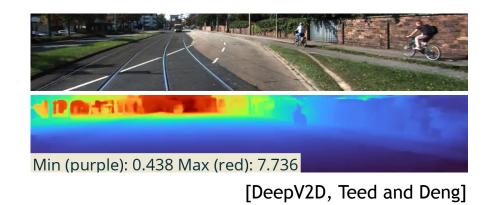
Introduction Multi-view Depth Estimation

Keyview V₀

Depth map for the keyview

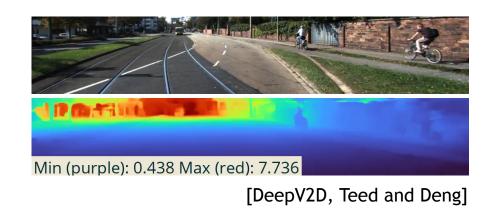
Depth Uncertainty

Source views V₁,...,V_k



Depth-from-video:

- sequential input views
- **inputs**: images, intrinsics
- evaluation: align and compare predicted and ground truth depth maps

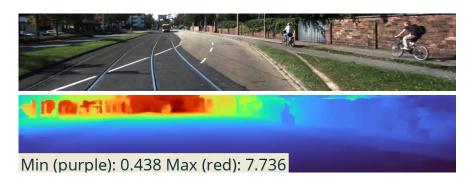


Depth-from-video:

- sequential input views
- inputs: images, intrinsics
- evaluation: align and compare predicted and ground truth depth maps

Multi-view Stereo:

- unstructured input views
- inputs: images, intrinsics, poses, depth range
- evaluation: fuse depth maps and compare predicted and ground truth pointclouds



[Vis-MVSNet, Zhang et al.]

Depth-from-video:

- sequential input views
- inputs: images, intrinsics
- evaluation: align and compare predicted and ground truth depth maps

Multi-view Stereo:

- unstructured input views
- inputs: images, intrinsics, poses, depth range
- evaluation: fuse depth maps and compare predicted and ground truth pointclouds

[Vis-MVSNet, Zhang et al.]

[DeepV2D, Teed and Deng]

ightarrow depth is estimated from multiple input views

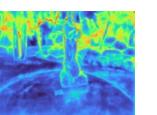
Introduction Motivation for the Benchmark

Depth estimation is useful for many practical applications: autonomous driving, augmented reality, robotics, ...

- ightarrow failures can be fatal
- → depth estimation should function robustly in an open-world setting with potentially unseen
 objects
- \rightarrow multi-view depth estimation can derive depth from the **motion parallax** \rightarrow generic principle that **should enable generalization**
- \rightarrow however: training and testing is often done on similar data

Objective: evaluate multi-view depth estimation in an open-world setting

Benchmark multi-view depth estimation models regarding robust application on arbitrary real-world data.


Benchmark multi-view depth estimation models regarding robust application on arbitrary real-world data.

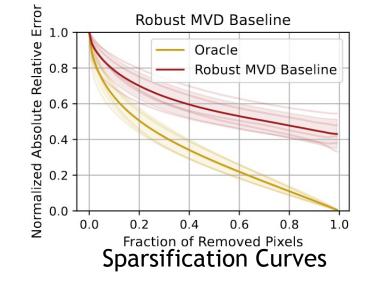
Keyview V₀

Min: 2.255 Max: 100.000

Depth map for the keyview

Source views $V_1, ..., V_k$

Depth Uncertainty


Comprises test sets based on diverse existing datasets:

	KITTI	ScanNet	ETH3D	DTU	Τ&Τ
Domain	Driving	Indoor	In- & outdoor	Tabletop	In- & outdoor
Structure	Video	Video	None	None	None
Scene scale	2 - 85m	0.2 - 0.9m	0.3 - 60m	0.4 - 1.2m	1.1 - 42m
# samples	93	200	104	110	69

- \rightarrow training data intentionally left undefined
- \rightarrow evaluation in a zero-shot cross-dataset fashion

Robust Multi-view Depth Benchmark Settings and Metrics

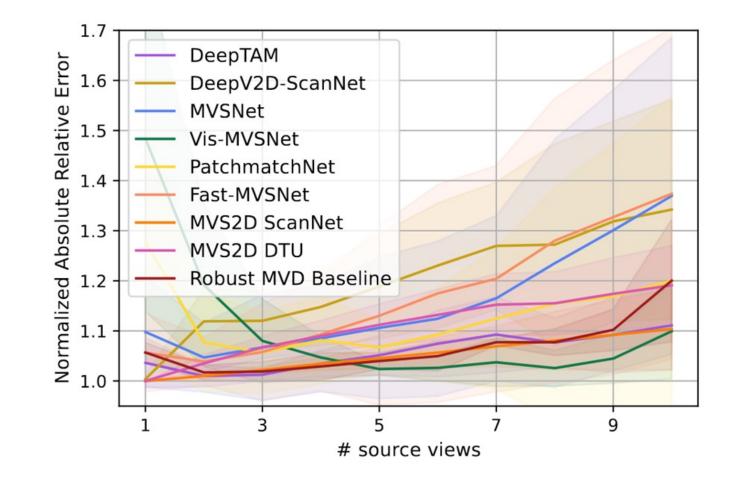
- Features different evaluation settings:
 - input modalities: images, intrinsics, poses, depth range
 - optional alignment between predicted and GT depth maps
- Depth estimation metrics:
 - Absolute Relative Error (rel)
 - Inlier Ratio with a Threshold of 1.03 (τ)
- Uncertainty metrics:
 - Sparsification Error Curves
 - Area Under Sparsification Error (AUSE)

Approach	GT	GT	Align	Kľ	KITTI		nNet	ETH	I3D	D	TU	Tð	¢Т	Average		
	Poses	Range		rel ↓	$ au\uparrow$	rel ↓	$ au\uparrow$	rel ↓	$\tau\uparrow$	rel ↓	$ au\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	time [s] \downarrow
COLMAP	1	×	X	12.0	58.2	14.6	34.2	16.4	55.1	0.7	96.5	2.7	95.0	9.3	67.8	$\approx 3 \min$
COLMAP Dense	 ✓ 	×	×	26.9	52.7	38.0	22.5	89.8	23.2	20.8	69.3	25.7	76.4	40.2	48.8	$\approx 3 \min$
DeMoN	X	×	 t 	15.5	15.2	12.0	21.0	17.4	15.4	21.8	16.6	13.0	23.2	16.0	18.3	0.08
DeepV2D KITTI	X	×	med	(3.1)	(74.9)	23.7	11.1	27.1	10.1	24.8	8.1	34.1	9.1	22.6	22.7	2.07
DeepV2D ScanNet	×	×	med	10.0	36.2	(4.4)	(54.8)	11.8	29.3	7.7	33.0	8.9	46.4	8.6	39.9	3.57
MVSNet	1	 ✓ 	X	22.7	36.1	24.6	20.4	35.4	31.4	(1.8)	(86.0)	8.3	73.0	18.6	49.4	0.07
MVSNet Inv. Depth	1	1	×	18.6	30.7	22.7	20.9	21.6	35.6	(1.8)	(86.7)	6.5	74.6	14.2	49.7	0.32
CVP-MVSNet	1	1	×	156.7	2.2	137.1	15.9	156.4	13.6	(4.0)	(68.4)	24.7	52.9	95.8	30.6	0.49
Vis-MVSNet	1	1	×	9.5	55.4	8.9	33.5	10.8	43.3	(1.8)	(87.4)	4.1	87.2	7.0	61.4	0.70
PatchmatchNet	1	1	×	10.8	45.8	8.5	35.3	19.1	34.8	(2.1)	(82.8)	4.8	82.9	9.1	56.3	0.28
Fast-MVSNet	1	1	×	14.4	37.1	17.0	24.6	25.2	32.0	(2.5)	(81.8)	8.3	68.6	13.5	48.8	0.30
MVS2D ScanNet	1	1	×	21.2	8.7	(27.2)	(5.3)	27.4	4.8	17.2	9.8	29.2	4.4	24.4	6.6	0.04
MVS2D DTU	1	 ✓ 	×	226.6	0.7	32.3	11.1	99.0	11.6	(3.6)	(64.2)	25.8	28.0	77.5	23.1	0.05

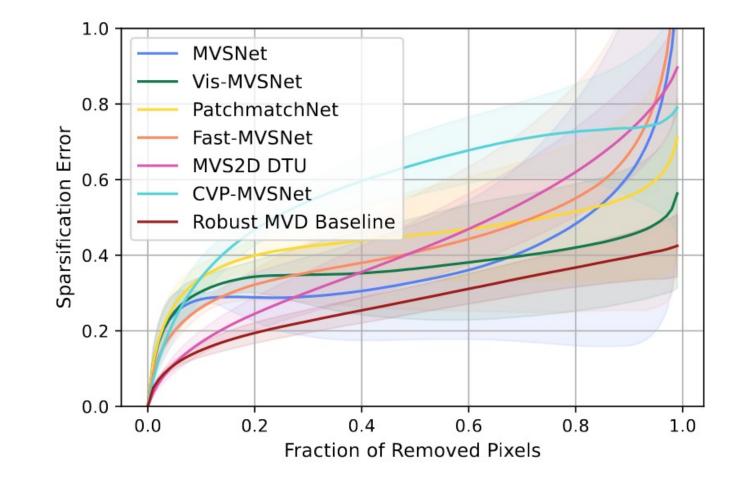
Approach	GT	GT	Align	Kľ	ГТІ	Scar	nNet	ETH	I3D	D	TU	Тð	¢Т	Average		
	Poses	Range		rel↓	$ au\uparrow$	rel ↓	$ au\uparrow$	rel \downarrow	$\tau\uparrow$	rel ↓	$ au\uparrow$	rel \downarrow	$\tau\uparrow$	rel \downarrow	$\tau\uparrow$	time [s] \downarrow
COLMAP	1	X	X	12.0	58.2	14.6	34.2	16.4	55.1	0.7	96.5	2.7	95.0	9.3	67.8	$\approx 3 \min$
COLMAP Dense	 Image: A second s	×	×	26.9	52.7	38.0	22.5	89.8	23.2	20.8	69.3	25.7	76.4	40.2	48.8	$\approx 3 \min$
DeMoN	X	X	$\ \mathbf{t}\ $	15.5	15.2	12.0	21.0	17.4	15.4	21.8	16.6	13.0	23.2	16.0	18.3	0.08
DeepV2D KITTI	X	X	med	(3.1)	(74.9)	23.7	11.1	27.1	10.1	24.8	8.1	34.1	9.1	22.6	22.7	2.07
DeepV2D ScanNet	X	×	med	10.0	36.2	(4.4)	(54.8)	11.8	29.3	7.7	33.0	8.9	46.4	8.6	39.9	3.57
MVSNet	1	 Image: A second s	X	22.7	36.1	24.6	20.4	35.4	31.4	(1.8)	(86.0)	8.3	73.0	18.6	49.4	0.07
MVSNet Inv. Depth	1	1	X	18.6	30.7	22.7	20.9	21.6	35.6	(1.8)	(86.7)	6.5	74.6	14.2	49.7	0.32
CVP-MVSNet	1	1	X	156.7	2.2	137.1	15.9	156.4	13.6	(4.0)	(68.4)	24.7	52.9	95.8	30.6	0.49
Vis-MVSNet	1	1	X	9.5	55.4	8.9	33.5	10.8	43.3	(1.8)	(87.4)	4.1	87.2	7.0	61.4	0.70
PatchmatchNet	1	1	X	10.8	45.8	8.5	35.3	19.1	34.8	(2.1)	(82.8)	4.8	82.9	9.1	56.3	0.28
Fast-MVSNet	1	1	X	14.4	37.1	17.0	24.6	25.2	32.0	(2.5)	(81.8)	8.3	68.6	13.5	48.8	0.30
MVS2D ScanNet	1	1	X	21.2	8.7	(27.2)	(5.3)	27.4	4.8	17.2	9.8	29.2	4.4	24.4	6.6	0.04
MVS2D DTU	1	1	X	226.6	0.7	32.3	11.1	99.0	11.6	(3.6)	(64.2)	25.8	28.0	77.5	23.1	0.05

Approach	GT	GT	Align	KI	ГТІ	Scar	nNet	ETH	I3D	D	TU	Tå	¢Т	Average		
	Poses	Range		rel ↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	time [s]↓
COLMAP	1	X	X	12.0	58.2	14.6	34.2	16.4	55.1	0.7	96.5	2.7	95.0	9.3	67.8	$\approx 3 \min$
COLMAP Dense	1	×	×	26.9	52.7	38.0	22.5	89.8	23.2	20.8	69.3	25.7	76.4	40.2	48.8	$\approx 3 \min$
DeMoN	X	X	 t 	15.5	15.2	12.0	21.0	17.4	15.4	21.8	16.6	13.0	23.2	16.0	18.3	0.08
DeepV2D KITTI	×	×	med	(3.1)	(74.9)	23.7	11.1	27.1	10.1	24.8	8.1	34.1	9.1	22.6	22.7	2.07
DeepV2D ScanNet	×	×	med	10.0	36.2	(4.4)	(54.8)	11.8	29.3	7.7	33.0	8.9	46.4	8.6	39.9	3.57
MVSNet	1	1	×	22.7	36.1	24.6	20.4	35.4	31.4	(1.8)	(86.0)	8.3	73.0	18.6	49.4	0.07
MVSNet Inv. Depth	1	1	×	18.6	30.7	22.7	20.9	21.6	35.6	(1.8)	(86.7)	6.5	74.6	14.2	49.7	0.32
CVP-MVSNet	1	1	×	156.7	2.2	137.1	15.9	156.4	13.6	(4.0)	(68.4)	24.7	52.9	95.8	30.6	0.49
Vis-MVSNet	1	1	×	9.5	55.4	8.9	33.5	10.8	43.3	(1.8)	(87.4)	4.1	87.2	7.0	61.4	0.70
PatchmatchNet	1	1	×	10.8	45.8	8.5	35.3	19.1	34.8	(2.1)	(82.8)	4.8	82.9	9.1	56.3	0.28
Fast-MVSNet	1	1	×	14.4	37.1	17.0	24.6	25.2	32.0	(2.5)	(81.8)	8.3	68.6	13.5	48.8	0.30
MVS2D ScanNet	1	1	×	21.2	8.7	(27.2)	(5.3)	27.4	4.8	17.2	9.8	29.2	4.4	24.4	6.6	0.04
MVS2D DTU	1	1	×	226.6	0.7	32.3	11.1	99.0	11.6	(3.6)	(64.2)	25.8	28.0	77.5	23.1	0.05

Approach	GT	GT	Align	Kľ	ГТІ	Scan	Net	ETH	3D	DT	U	T&	rΤ	Average		
	Poses	Range		rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel ↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel ↓	$\tau\uparrow$	time [s]↓
DeMoN	1	X	X	16.7	13.4	75.0	0.0	19.0	16.2	23.7	11.5	17.6	18.3	30.4	11.9	0.08
DeepTAM	1	X	X	68.7	0.4	(6.7)	(39.7)	20.4	19.8	58.0	9.1	40.0	12.9	38.8	16.4	0.85
DeepV2D KITTI	1	X	X	(20.4)	(16.3)	25.8	8.1	30.1	9.4	24.6	8.2	38.5	9.6	27.9	10.3	1.43
DeepV2D ScanNet	1	X	X	61.9	5.2	(3.8)	(60.2)	18.7	28.7	9.2	27.4	33.5	38.0	25.4	31.9	2.15
MVSNet	1	X	X	14.0	35.8	1568.0	5.7	507.7	8.3	(4429.1)	(0.1)	118.2	50.7	1327.4	20.1	0.15
MVSNet Inv. Depth	1	X	X	29.6	8.1	65.2	28.5	60.3	5.8	(28.7)	(48.9)	51.4	14.6	47.0	21.2	0.28
CVP-MVSNet	1	X	X	158.2	1.2	2289.0	0.1	1735.3	1.2	(8314.0)	(0.0)	415.9	9.5	2582.5	2.4	0.50
Vis-MVSNet	1	X	X	10.3	54.4	84.9	15.6	51.5	17.4	(374.2)	(1.7)	21.1	65.6	108.4	31.0	0.82
PatchmatchNet	1	X	X	29.0	16.3	70.1	16.7	99.4	3.5	(82.6)	(5.6)	39.4	19.3	64.1	12.3	0.18
Fast-MVSNet	1	X	X	12.1	37.4	287.1	9.4	131.2	9.6	(540.4)	(1.9)	33.9	47.2	200.9	21.1	0.35
MVS2D ScanNet	1	X	X	73.4	0.0	(4.5)	(54.1)	30.7	14.4	5.0	57.9	56.4	11.1	34.0	27.5	0.05
MVS2D DTU	1	X	X	93.3	0.0	51.5	1.6	78.0	0.0	(1.6)	(92.3)	87.5	0.0	62.4	18.8	0.06
Robust MVD Baseline	1	X	X	7.1	41.9	7.4	38.4	9.0	42.6	2.7	82.0	5.0	75.1	6.3	56.0	0.06

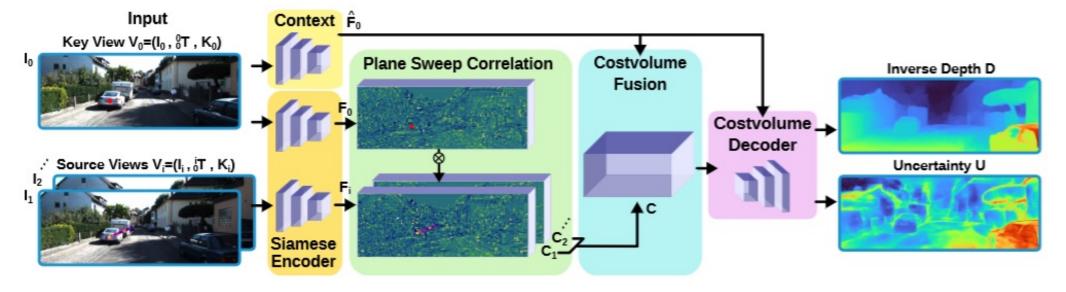

Approach	GT	GT	Align	Kľ	ГТІ	Scan	Net	ETH	3D	DT	U	T&	τ'		Avera	age
	Poses	Range		rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel ↓	$\tau\uparrow$	rel ↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	time [s]↓
DeMoN	1	×	×	16.7	13.4	75.0	0.0	19.0	16.2	23.7	11.5	17.6	18.3	30.4	11.9	0.08
DeepTAM	1	×	×	68.7	0.4	(6.7)	(39.7)	20.4	19.8	58.0	9.1	40.0	12.9	38.8	16.4	0.85
DeepV2D KITTI	1	×	×	(20.4)	(16.3)	25.8	8.1	30.1	9.4	24.6	8.2	38.5	9.6	27.9	10.3	1.43
DeepV2D ScanNet	1	×	×	61.9	5.2	(3.8)	(60.2)	18.7	28.7	9.2	27.4	33.5	38.0	25.4	31.9	2.15
MVSNet	1	×	×	14.0	35.8	1568.0	5.7	507.7	8.3	(4429.1)	(0.1)	118.2	50.7	1327.4	20.1	0.15
MVSNet Inv. Depth	1	×	×	29.6	8.1	65.2	28.5	60.3	5.8	(28.7)	(48.9)	51.4	14.6	47.0	21.2	0.28
CVP-MVSNet	1	×	×	158.2	1.2	2289.0	0.1	1735.3	1.2	(8314.0)	(0.0)	415.9	9.5	2582.5	2.4	0.50
Vis-MVSNet	1	×	×	10.3	54.4	84.9	15.6	51.5	17.4	(374.2)	(1.7)	21.1	65.6	108.4	31.0	0.82
PatchmatchNet	1	×	×	29.0	16.3	70.1	16.7	99.4	3.5	(82.6)	(5.6)	39.4	19.3	64.1	12.3	0.18
Fast-MVSNet	1	×	×	12.1	37.4	287.1	9.4	131.2	9.6	(540.4)	(1.9)	33.9	47.2	200.9	21.1	0.35
MVS2D ScanNet	1	×	×	73.4	0.0	(4.5)	(54.1)	30.7	14.4	5.0	57.9	56.4	11.1	34.0	27.5	0.05
MVS2D DTU	1	×	×	93.3	0.0	51.5	1.6	78.0	0.0	(1.6)	(92.3)	87.5	0.0	62.4	18.8	0.06
Robust MVD Baseline	1	×	×	7.1	41.9	7.4	38.4	9.0	42.6	2.7	82.0	5.0	75.1	6.3	56.0	0.06

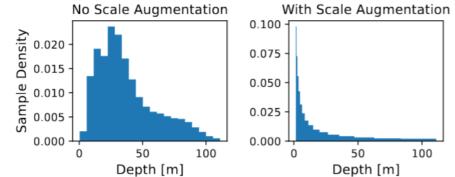
Approach	GT	GT	Align	KI	ГТІ	Scan	Net	ETH	3D	DT	U	T&	τ		ige	
	Poses	Range		rel↓	$\tau\uparrow$	rel ↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel ↓	$\tau\uparrow$	time [s]↓
DeMoN	1	×	×	16.7	13.4	75.0	0.0	19.0	16.2	23.7	11.5	17.6	18.3	30.4	11.9	0.08
DeepTAM	1	×	×	68.7	0.4	(6.7)	(39.7)	20.4	19.8	58.0	9.1	40.0	12.9	38.8	16.4	0.85
DeepV2D KITTI	1	×	×	(20.4)	(16.3)	25.8	8.1	30.1	9.4	24.6	8.2	38.5	9.6	27.9	10.3	1.43
DeepV2D ScanNet	1	×	×	61.9	5.2	(3.8)	(60.2)	18.7	28.7	9.2	27.4	33.5	38.0	25.4	31.9	2.15
MVSNet	1	×	×	14.0	35.8	1568.0	5.7	507.7	8.3	(4429.1)	(0.1)	118.2	50.7	1327.4	20.1	0.15
MVSNet Inv. Depth	1	×	×	29.6	8.1	65.2	28.5	60.3	5.8	(28.7)	(48.9)	51.4	14.6	47.0	21.2	0.28
CVP-MVSNet	1	X	×	158.2	1.2	2289.0	0.1	1735.3	1.2	(8314.0)	(0.0)	415.9	9.5	2582.5	2.4	0.50
Vis-MVSNet	1	×	×	10.3	54.4	84.9	15.6	51.5	17.4	(374.2)	(1.7)	21.1	65.6	108.4	31.0	0.82
PatchmatchNet	1	×	×	29.0	16.3	70.1	16.7	99.4	3.5	(82.6)	(5.6)	39.4	19.3	64.1	12.3	0.18
Fast-MVSNet	1	×	×	12.1	37.4	287.1	9.4	131.2	9.6	(540.4)	(1.9)	33.9	47.2	200.9	21.1	0.35
MVS2D ScanNet	1	×	×	73.4	0.0	(4.5)	(54.1)	30.7	14.4	5.0	57.9	56.4	11.1	34.0	27.5	0.05
MVS2D DTU	1	×	×	93.3	0.0	51.5	1.6	78.0	0.0	(1.6)	(92.3)	87.5	0.0	62.4	18.8	0.06
Robust MVD Baseline	1	X	X	7.1	41.9	7.4	38.4	9.0	42.6	2.7	82.0	5.0	75.1	6.3	56.0	0.06



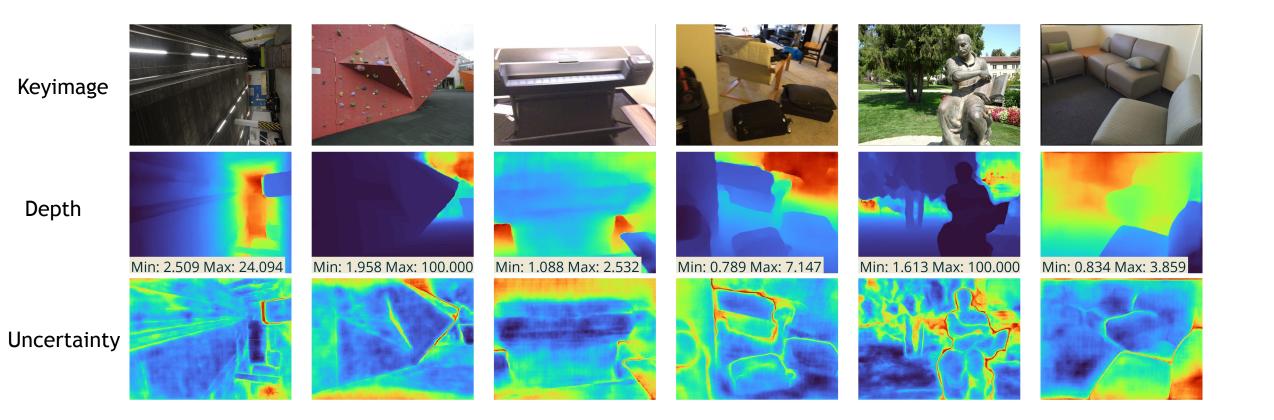
Multi-view Fusion Results

Robust Multi-view Depth Benchmark Uncertainty Estimation Results




Automotive Suitability | A Benchmark and a Baseline for Robust Multi-view Depth Estimation

Robust MVD Baseline Model Overview



- Architecture: based on DispNet
- Training data: BlendedMVS + StaticThings3D
- → Data augmentation: Scale augmentation

Robust MVD Baseline Model Qualitative Results

Automotive Suitability | A Benchmark and a Baseline for Robust Multi-view Depth Estimation

robustmvd Framework

https://github.com/lmb-freiburg/robustmvd

- → data: provides scripts and dataloaders to setup and use multiple datasets with a common interface
- \rightarrow model zoo: of pre-trained depth estimation models with a common interface
- \rightarrow evaluation: provides code to evaluate models on the rmvd benchmark

robustmvd Framework

https://github.com/lmb-freiburg/robustmvd

- inference: provides scripts to run multi-view depth estimation on custom data with any of the available models
- \rightarrow data viewer: provides a data viewer to visualize input data and model predictions
- current student project: add training code and conduct analysis

- → We show problems of current multi-view depth models: cross-domain generalization, uncertainty estimation, multi-view fusion
- We introduce a benchmark to improve upon these problems
- → Robust MVD Baseline model can be used as baseline on the benchmark and for robust multiview depth estimation in applications where camera poses are known
- \rightarrow robustmvd Framework unifies datasets and models with a common interface

Thanks!

Questions?

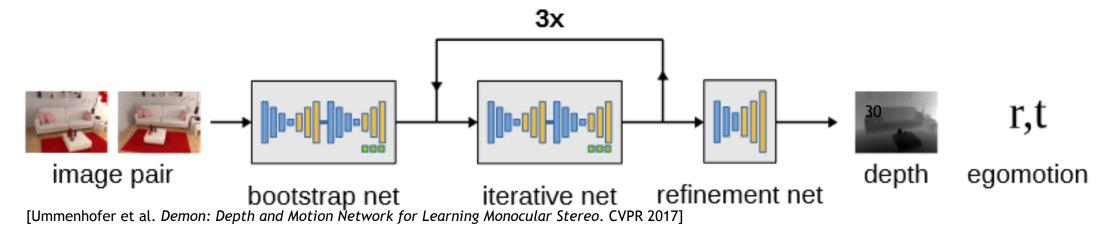
Code: <u>https://github.com/lmb-freiburg/robustmvd</u>

Philipp Schröppel | Uni Freiburg schroepp@cs.uni-freiburg.de

KI Delta Learning is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

www.ki-deltalearning.de 🈏 @KI_Familie in KI Familie

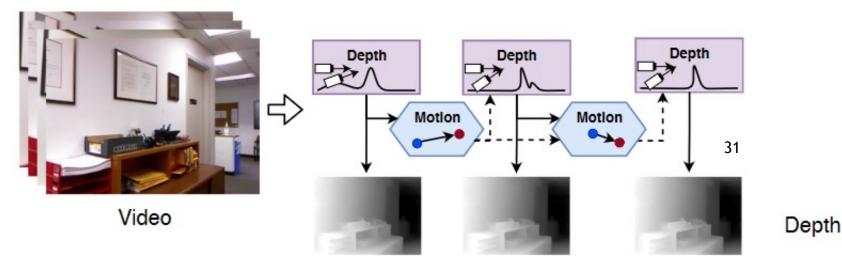
Supported by:


Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Related Work DeMoN (first depth-from-"video")

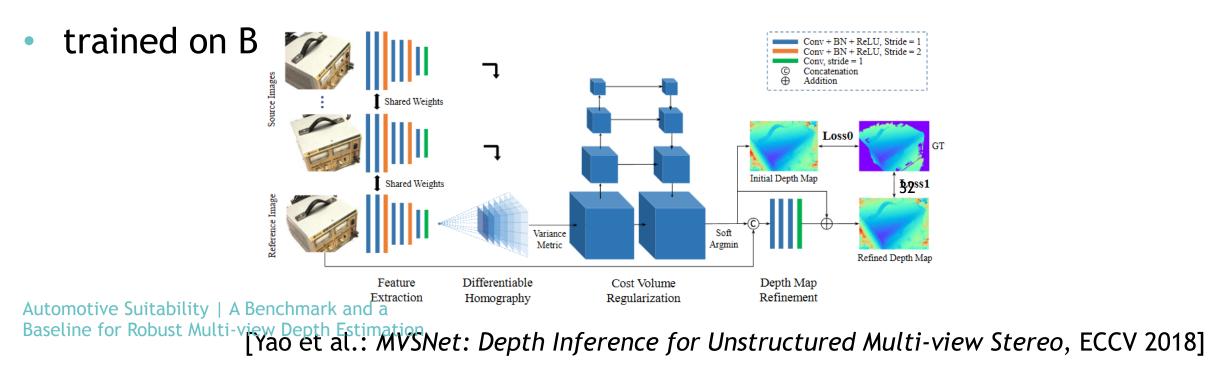
- no explicit correlation layer within the network, but intermediate optical flow estimation
- trained on diverse data



Automotive Suitability | A Benchmark and a Baseline for Robust Multi-view Depth Estimation

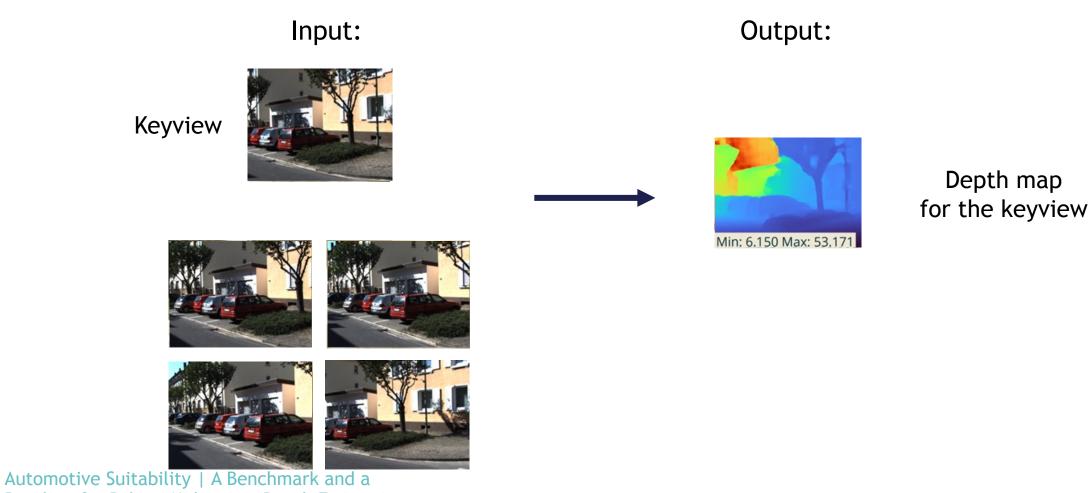
Related Work DeepV2D (depth-from-video)

- separate mapping and tracking modules to estimate depths and poses alternatingly
- builds plane sweep stereo costvolume from learned features
- trained



Automotive Suitability | A Benchmark and a

Basel [TeodRand: Deng.: DeepV2D: Video to Depth with Differentiable Structure from Motion, ICLR 2020]


Related Work MVSNet (multi-view stereo)

 builds costvolume in a plane sweep stereo fashion based on the variance between multi-view features + decodes costvolume with 3d convolutions

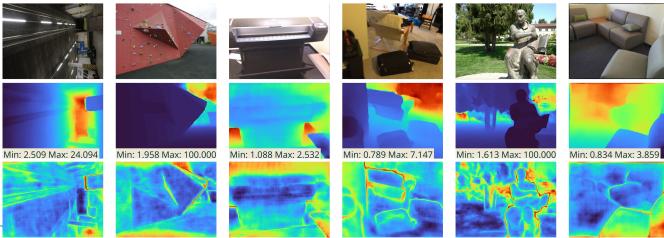
Robust Multi-view Depth Estimation

Keyview

Baseline for Robust Multi-view Depth Estimation

Robust Multi-view Depth Estimation

We define a benchmark based on **diverse existing datasets**:


\rightarrow evaluation in a zero-shot cross-dataset fashion

Automotive Suitability | A Benchmark and a Baseline for Robust Multi-view Depth Estimation

→ We show problems of current multi-view depth models: cross-domain generalization, uncertainty estimation, multi-view fusion

- The benchmark can be used to improve upon these problems
- \rightarrow Introduce **model** for robust multi-view depth estimation on data from different domains

Automotive Suitability | A Ber Baseline for Robust Multi-view Depth Estimation