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Dear Readers,

As coordinator of KI Delta Learning, I am 
delighted to present the results of this 
project. The booklet you are holding in hands 
shows the achievements of more than three 
years of intensive work in a nutshell. More 
than 300 people teamed in 6 sub-projects 
and 21 work packages to advance autonomy 
at scale. This team effort has paid off! 
On the following pages, we are introducing 
our project topics, illustrating our approaches 
and presenting around 50 research topics. 
17 project partners and four external partners 

collaborated, shared findings and extended 
their knowledge mutually. Our partners include 
OEMs, automotive suppliers, technology 
providers as well as universities and research 
institutes. This mix of partners allowed a 
quick transfer of results and approaches from 
different research and technology fields to 
the industry. In return, academia received a 
better understanding of requirements and 
challenges regarding product development. 
During the last three years, our project 
published more than 90 scientific papers 

Welcome and established the workshop Autonomy@
Scale at IEEE Intelligent Vehicles Symposium. 
Initiated by VDA Leitinitiative Connected 
and Autonomous Driving, KI Delta Lear-
ning would not have been possible without 
the commitment of all partners involved. 
Their different expertise and backgrounds 
were the basis of our common success.
The support and guidance of the Federal 
Ministry for Economic Affairs and Climate 
Action as well as the project officer TÜV Rhein-
land Consulting were helpful mastering the 
various project phases. On behalf of the whole 
team, I would like to thank them very much. 
I would like to thank the deputy lead ZF 
and the other sub-project leads from Valeo, 
Bosch, University of Wuppertal and 

DLR as well as the project management 
team at EICT for their valuable contri-
butions in coordinating the project.
My special gratitude goes to all of you, who 
contributed to the great results of KI Delta 
Learning. All of you, who have been active 
to set up, manage, fund and research. You 
made this project a true success and a 
pleasure to work in. Autonomy at scale took 
an important step on the way to reality!

Dr.-Ing. Amin Hosseini
Project Coordinator 
Mercedes-Benz AG
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Autonomous and connected driving will 
shape the mobility of the future and enable 
completely new concepts, including aiming 
towards the goal of climate neutrality. There 
are numerous research and development 
issues to be addressed along the way. Traffic 
is not only diverse and complex, but also 
constantly changing. Highly and fully automa-
ted vehicles must be able to handle a wide 
variety of situations safely and reliably. 
This results in one of the most challenging 
and exciting application areas for artifi-

cial intelligence. With its flagship projects 
from the “KI Familie”, the Federal Ministry 
for Economics Affairs and Climate Action is 
promoting a cooperative research approach 
that brings together the expertise of nume-
rous participants. This yields an outstanding 
foundation for the next step toward the safe 
implementation of broad AI know-how in 
vehicles. Germany must keep addressing the 
central questions surrounding the future of 
autonomous mobility in order to assert itself 
in international automotive competition. 

Greeting from the Federal Ministry for 
Economic Affairs and Climate Action

Over the 39 months duration of the KI Delta 
Learning project, methods and tools were 
developed that enable a more efficient training 
of AI and render the unrestricted use of auto-
mated vehicles in the „Open World“ possible. 
The methods of versatile machine learning that 
were explored, are setting a new standard for 
a more efficient training of AI. This marks the 
end of the second of four projects of the “KI 
Familie” that were jointly launched in 2019. 
We would like to thank all participating 
partners from industry and science for 
their outstanding work and results. They 

have thus provided another important 
building block on the way to the unres-
tricted use of automated vehicles!

Ernst Stöckl-Pukall
Head of Division for 
Digitalisation and Industry 4.0,  
Federal Ministry of Economic  
Affairs and Climate Action 
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Classic automotive questions are re-emer-
ging with regard to AI. AI technology 
know-how and its safe use in modern 
vehicles will determine the leading role 
in the mobility markets of the future. 
The German automotive industry addres-
ses this challenge with the projects of the 
KI Familie. The KI Familie was initiated and 
developed by the VDA Leitinitiative Connected 
and Autonomous Driving. 80 leading part-
ners from science and industry are involved 
receiving funding from the Federal Ministry for 
Economic Affairs and Climate Action (BMWK). 

In this unique setting, all KI Familie projects 
are working together. The partners are sharing 
knowledge while fostering pre-competitive 
collaboration which is essential in an ever more 
competitive and complex environment with fast 
pace innovations. Exchanging findings across 
project boundaries accelerates the knowledge 
buildup in cutting edge technologies for the 
good of industries, research institutions and 
society. The joint commitment to share pre-
competitive knowledge helps each partner 
to stay technologically ahead and multiplies 
resources and investments of each partner.

Collaboration in Artificial Intelligence The KI Familie has four sibling projects which all are focusing on special AI topics.

KI ABSICHERUNG 
Methods  and measures to safeguard AI-based  
perception functions for automated driving. 
https://www.ki-absicherung-projekt.de

KI WISSEN 
Development of methods for 
the integration of  knowledge 
into machine learning. 
https://www.kiwissen.de

KI DELTA LEARNING 
Development of methods and tools  for the 
efficient expansion and  transformation 

of existing AI modules in autonomous 
vehicles  to meet the challenges of new  

domains. 
https://www.ki-deltalearning.de

KI DATA TOOLING 
Methods and tools for the gene-

ration and  refinement of training, 
validation and  safeguarding data for AI 

functions in  autonomous vehicles. 
https://www.ki-datatooling.de
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Scalable AI for Automated Driving

Highly and fully automated vehicles are 
facing a large variety of complex situations 
in a continuously evolving world of mobility. 
Especially for environment detection, Artificial 
Intelligence is a key technology. In recent 
years AI made huge progress, however, auto-
motive AI was trained for limited scenarios 
only. To work in other environments, AI algo-
rithms needed re-training for new domains, 
resulting in enormous development costs.
The KI Delta Learning project has investiga-
ted new approaches in machine learning to 
enable more efficient training of AI modu-

les. In turn, this leads to better adoption 
and more effective deployment of auto-
mated functions for the Open World.
The project aimed at bridging deltas - diffe-
rent requirements between a familiar domain 
and a new target domain. New methods to  
transfer existing knowledge to new application 
areas have been studied, developed, applied 
and now lay the basis for autonomy at scale.
The project efforts focused on transfer-
ring knowledge to new target domains, 
training methods enabling AI to learn 
additional requirements of changing appli-
cation areas and how to adapt new tech-
niques to automotive constraints. 

KI Delta Learning

The deltas included:

• Changes in sensors

• Divers traffic areas - from country  
roads to complex city traffic

• different countries

• Different daytimes, seasons  
and weather conditions

 

• Long-term traffic changes by new  
mobility concepts and road users

• Ongoing development of AI methods such as 
better training strategies and more efficient 
neural networks.

AI systems that are trained on a 

specific domais are extended to 

other domains. The system needs 

no complete retraining but can be 

efficiently extended by Delta Learning.
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Starting Position and Challenges

AI modules in autonomous driving applica-
tions are scalable to a limited extent only. 
In fact, they are reliable only in limited 
domains. This results from the applied trai-
ning strategies. Re-training the algorithms 
for each new domain, is a costly procedure.
KI Delta Learning investigated disruptive 
methods for AI training allowing continu-
ous learning in a more sustainable way. 
Knowledge that has already been learned 
as well as previously tested and secured 
development levels are retained when 

changing domains. This represents an effi-
cient approach to keep up with ever shorter 
innovation cycles and the challenge of 
constantly changing mobility systems.
KI Delta Learning developed methods to 
help closing these current gaps that limit the 
Technology Readiness Level (TRL) of auto-
nomous vehicles and slow down a broad 
application of AI in autonomous driving.

Key Facts Our Objective: Autonomy at Scale

AI used in autonomous vehicles must be 
responsive to a constantly evolving market 
and scalable to meet changing requirements. 
Typical examples of domain changes - deltas - 
are different sensors as well as changes in time 
and location.

Project Objectives – Bridging Deltas
 
To address these deltas, the project focused 
on three main areas for delta learning: transfer 
learning, didactics and automotive suitability.
KI Delta Learning tested different approa-
ches and aspects of these areas in order 
to create the next generation of AI algo-

rithms suitable for an unrestricted 
use in autonomous vehicles.

To provide a basis for develop-
ment in the three areas, a 

project-specific data set 
tailored to the project 
objectives was produ-

ced and labelled

KI Delta Learning Deltas, Domains and Changes.
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Dr.-Ing. Amin Hosseini
Mercedes-Benz AG
Project Coordinator

40 Months
Project Duration:  (01/01/2020 - 30/04/2023)

17 Project Partners
9 Industry Partners
6 Academic Partners
2 Research Institutes

Facts & Figures

€ 26,15 M
Project Budget

€ 15,87 M
Funding Budget

Funding Body
Federal Ministry for 
Economic Affairs and 
Climate Action (BMWK)



[ 14 ]  [ 15 ]

Motivation

The basis for developing artificial neural 
networks is the underlying data. Combining 
the requirement to cover all deltas explo-
red in the project and being compliant to 
data protection is a demanding challenge. 
We addressed this problem by creating a real 
world and a synthetic reference dataset.

Real World Recordings

First, a recording vehicle was equipped 
with different reference and serial sensors, 

co-calibrated and synchronized. Secondly, 
we initiated a recording campaign stretched 
over nearly one year. To reach a high variety, 
we designed different routes to cover:

• multiple countries (Germany & Italy) and 
cities in urban and rural areas

• different daytimes, seasons, weather and 
lightning conditions

• features like e-scooter and special 

The quality of all recorded raw data was 
evaluated and a subset of frames was selected 
for labeling. After anonymizing all frames, 

Data

they were annotated with semantic segmen-
tation and 3D bounding boxes. The result are 
7,000,000 raw frames per sensor (193 hours). 
Of those, 18,000 frames have been selec-
ted to form the KI-Delta Learning dataset.

Synthetic Data Generation

In order to complete the dataset, we investiga-
ted methods to generate synthetic data. One 
approach was based on the CARLA Simulator, 

where we implemented a new serial LiDAR 
sensor model and improved the generation 
of semantic segmentation. Another approach 
used motion capture to generate realistic 
human poses and motion. To improve the 
quality of interaction with the virtual envi-
ronment, motion capture was combined 
with Virtual Reality, where the actor can see 
not only the virtual environment, but also a 
body representation allowing self-percep-
tion. Reality, where the actor can see not 
only the virtual environment, but also a body 
representation allowing self-perception.

Research Vehicle at Test Field Lower Saxony

Image Generated in CARLA Simulator



Humans are capable of ab-
straction and can abstract 
to a new example with 
the help of a few learning 
examples, which may be 
from different domains. In 
this case real and synthetic 
(triangle) examples.

Modern AI methods work with a 
database. In this case, the database 
contains only real examples of images 
(circles). Although a similar image 
(orange) sample is present in the 
data, the AI cannot abstract to the 
synthetic image that comes from a 
different image distribution (triangle). 

AI methods that use transfer learning can cope with 
arbitrary data, since the inherent knowledge can be 
transferred to an AI through transfer learning methods. 
In addition, such AI methods can generalise better and 
require less learning data. Due to the additional develop-
ment effort, the transfer learning AI is smarter and can 
therefore recognise the synthetic vehicle in this example 
with the help of other synthetic data (triangle).
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In KI Delta Learning, we use transfer learning, 
a powerful machine learning technique that 
enables the reuse of knowledge acquired from 
one domain to another. This technique has 
been gaining importance in the automotive 
field, as it allows for the utilization of existing 
knowledge from other domains to improve the 
accuracy of autonomous vehicle systems. The 
partners of KI Delta Learning develop transfer 
learning methods, that improve the perfor-
mance of vehicles with multimodal sensor 
equipment such as cameras, radar and LiDAR 
by transferring knowledge from existing data 
sets. Their methods can be used to reduce 

the amount of new data needed for training, 
enabling faster and more accurate predicti-
ons. Partners can quickly apply the knowledge 
from the existing dataset to the new prob-
lem and develop a model that is tailored to 
their specific needs. This can reduce the time 
and cost associated with developing a model 
from scratch and allow the partner to quickly 
deploy a model tailored to their specific needs.
The picture on the right gives a first impres-
sion of how AI methods with transfer learning 
differ from ordinary AI methods. The following 
pages present partner examples of transfer 
learning methods in the automotive context.

Transfer Learning

Transfer learning in a nutshell (©Bosch | Gemeinfrei)
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Didactics

Didactics enables learning, by reflecting 
and structuring the learning process. 
While in principle it is clear how to train a 
neural network with annotated data, the 
acquisition of the data is a time and resource 
consuming process, as human annotators 
are required. Improving this process to make 
the learning easier for deep neural networks 
is the task of the project area didactics. In 
particular, in the presence of various deltas, 
it would be inefficient to start learning from 
scratch over and over again. Therefore, in this 
project area we develop new approaches to 
learn with only a few data points annotated by 

humans or with no such labels at all (semi-
and unsupervised learning), to accelerate 
learning by optimizing network architectu-
res with regard to training or to improve the 
learning algorithms (training organization), 
to learn with less data by selecting the most 
informative samples (active learning), or to 
enable learning by building on prior success-
ful learning processes (knowledge transfer).
The project area didactics provides the 
common house to foster research in all 
these directions and has resulted in a 
huge number of remarkable methodolo-
gical results and scientific publications.  

Active Learning

Knowledge Transfer

+ Training Strategies

Semi- Unsupervised Learning

Manually annotated Data Supervised Training

Didactics searches for better solutions. Only a few data points are annotated according to special acquisition strategies, networks re-
use prior knowledge from related tasks or distill knowledge from teacher networks. In addition, with augmentation the dataset can be 
enhanced. Thereby, cost is reduced and training efficiency is enhanced.

The process of supervised learning. Data is collected and labeled by human annotators, before it can be used for training of neural net-
works. This process oftentimes is expensive and consumes a lot of energy for training specialized neural networks on various tasks.



[ 20 ]  [ 21 ]

Motivation

The process commonly used in the industry to 
engineer automotive AI systems is to develop, 
train, and verify AI functions in the lab using 
recorded data. Only the finished AI system is 
transferred to the vehicles during production 
or an update. Two problems arise here: First, 
the high-performance computer hardware in 
the lab and the embedded hardware in the 
vehicle differ significantly, and second, the 
situations in which a vehicle encounters in 
the real world may differ significantly from the 
previously recorded training and test data. 

Embedded Systems

The problems that arise in the transition 
to automotive embedded hardware are 
the limited resources. Both the computing 
speed and the available working memory are 
usually much lower in such systems than in 
usual laboratory computers. Despite these 
limitations, the AI system in the vehicle 
should nevertheless work reliably within 
the time limits specified for vehicle safety 
and demonstrate comparable performance 
to the laboratory system. To bridge this 
embedded systems delta, various techniques 

Automotive Suitability were developed in the project to reduce the 
resource requirements of an AI in the vehicle 
without severely compromising its function. 

Real World

The problems that arise when using a system 
trained and tested on no matter how much 
pre-recorded or generated data are more 
multifaceted. As the environment is constantly 
changing, novel objects will always appear 
thatwere not known at the time the AI system 
was created. In addition, there is an uncon-
trollably large amount of very rare and strange 
objects, behaviors, and conditions that cannot 
be fully represented in any data set. To bridge 
this real world delta, methods were developed 
in the project to increase the robustness of 

AI systems even in the presence of unexpec-
ted or unknown scenarios. New efforts in the 
design of automotive AI systems foresee a 
continuous monitoring of the AI functions in 
the field. Inthis way, data can be collected 
from the fleet that will lead to further design 
iteration to improve the response of the AI 
system to unexpected and unknown situations. 

ZF‘s ProAI offers highest compute ressorces for automotive embedded AI 
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Environmental adaptation and self-attention in the context of unsupervised domain adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Detection of critical weather situations in scenario-based traffic simulations using optimization techniques . . . . . . . . . . . . . . . . . . . . . . 44

Environm
ent

Environment
This category stands for changes in the surrounding over time. 
It summarizes long-term changes, such as those in weather 
and season, short-time changes as day and night as well as 
deltas between different countries and traffic conditions 
like traffic density or new and unfamiliar objects.
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Improving robustness against common 
corruptions with frequency biased models

Tonmoy Saikia, Thomas Brox, University of Freiburg | Cordelia Schmidt, INRIA

CNNs perform remarkably well when the training and test distributions are i.i.d, but 
unseen distortions, such as weather distortions can cause large drop in performance. 
Image corruption types have different characteristics in the frequency spectrum and 
would benefit from a targeted type of data augmentation, which, however, is often 
unknown during training. We introduce a mixture of two expert models specializing in 
high and low-frequency robustness, respectively. Moreover, we propose a new regu-
larization scheme that minimizes the total variation (TV) of convolution feature-maps 
to increase high-frequency robustness. The approach improves on corrupted images 
without degrading in-distribution performance. We demonstrate this on ImageNet-C 
and on an automotive dataset, both for object classification and object detection.

DNN specific Safety Concern:

Environm
ent

Trade-off between in-distribution performance (clean error) and out-of-distribution robustness (Corruption error). The proposed mixture of 

a low-frequency and a high-frequency expert shows a very good trade-off and yields the highest robustness. (© University of Freiburg)
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Introducing Intermediate Domains for 
Effective Self-Training during Test-time 

Robert Marsden, Mario Döbler, Bin Yang, University of Stuttgart

Experiencing domain shifts during test-time is nearly inevitable in practice and likely 
results in a severe performance degradation. To overcome this issue, test-time adaptation 
continues to update the initial source model during deployment. A promising direction 
are methods based on self-training which have been shown to be especially well suited 
for gradual domain shifts, since reliable pseudo-labels can be provided. While many 
domain shifts in reality evolve gradually, this does not always hold. Therefore, we aim 
to create an artificial intermediate domain during test-time which divides the current 
domain shift into a more gradual one, enabling to perform effective self-training. To 
investigate gradual shifts in the context of urban scene segmentation, we publish a new 
benchmark: CarlaTTA. It enables the exploration of several non-stationary domain shifts 

DNN specific Safety Concern:

Environm
ent

A few example images for each split contained in the new benchmark CarlaTTA. Starting from the source domain „clear“, every domain evolves gradually over time. The split 

„dynamic“ combines multiple domain shifts at a time and thereby even creates new ones. „Highway“ further introduces a shift in the class priors. (© University of Stuttgart) 
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Robustness Against Noisy Labels 
Through Uncertainty Estimation for 
LiDAR-based Semantic Segmentation

Mariella Dreissig, Florian Piewak, Andras Tuezkoe, Mercedes-Benz Cars AG

The predictive performance of any deep learning-based environment perception model 
for autonomous driving is partially governed by the quality of the underlying dataset. 
Systematic problems with the dataset and the respective labels can have a huge impact 
on the internal representation of the feature landscape the model infers from the ingested 
data. We discovered that state-of-the-art uncertainty estimation methods provide a basis 
for identifying and dealing with problematic label definitions. We furthermore deve-
loped a lean method on robustness against noisy labels using an hierarchical abstraction 
loss. We suggest that it can be applied to different domain shifts present in the data.

DNN specific Safety Concern:

Environm
ent / Training Strategies

Noisy LiDAR measurements through fog. Fog-augmented [1] point cloud from the KITTI dataset [2]. 

[1] M. Hahner, et al., “Fog simulation on real lidar point clouds for 3D object detection in adverse weather,” in IEEE ICCV, 2021.

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are we Ready for Autonomous Driving? The KITTI Vision Benchmark Suite,” in IEEE CVPR, 2012.
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An Unsupervised Domain Adaptive 
Approach for Multimodal 2D Object 
Detection in Adverse Weather Conditions

George Eskandar, Robert Marsden, Pavithran Pandiyan, Mario Döbler, Bin Yang, University of Stuttgart

While deep learning architectures that fuse vision and range data for 2D object detection  
have thrived in recent years, the corresponding modalities can degrade in adverse weather 
conditions, leading to a performance drop. Although domain adaptation methods attempt 
to bridge the domain gap between source and target domains, they do not extend to hete-
rogeneous data distributions. We propose an unsupervised domain adaptation framework, 
which adapts a 2D object detector for RGB and LiDAR sensors to a target domain featuring  
adverse weather conditions. Experiments performed on the DENSE dataset show that our 
method outperforms state-of-the-art unimodal methods in the single-target and  
multi-target domain adaptation settings.

DNN specific Safety Concern:

Environm
ent

The proposed approach consists of three components: a data augmentation scheme to simulate weather distortions, a cross-domain foreground object alignment, and a 

subnetwork to learn pretext tasks in a self-supervised way. 
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A Low-Complexity Approach 
for Domain Adaptation

Joshua Niemeijer, Jörg P. Schäfer, Deutsches Zentrum für Luft- und Raumfahrt e.V.

We present a low-complexity approach to address the domain discrepancy. We aim to 
align both distributions through semantic Self-Supervision. To that, we compute the 
class prototypes that represent the classes in the feature space. We assume that target 
domain feature representations are closer to the correct class centroids than to the 
incorrect ones. We exploit this property to improve this clustering and increase the 
target domain‘s segmentation quality. Given the improvements on the target domain, 
we can generate high-quality pseudo labels for self-training on the target domain. 
Self-training on the target domain results in the feature space‘s alignment of target 
and source domain distributions. This aids semantic clustering. Thus we end up with 
the synergistic effect seen in Figure 3 by iteratively improving the pseudo labels.

DNN specific Safety Concern:

Environm
ent

Top: An overview of the internal dependencies of our iterative approach for unsupervised domain adaptation. Bottom left: Segmentation quality over the iterations 

(green: the developed method). Bottom right: Results of the unsupervised domain adaptation approach for a adaptation from synthetic (GTA5) to real (Cityscapes) data. 
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Continual Learning for Model-
Based Reinforcement Learning

Tim Joseph, FZI Forschungszentrum Informatik, Karlsruhe

Keeping all collected data indefinitely for training is often infeasible. However, training 
a model in a naive way whenever new data is available leads to catastrophic forgetting, 
a phenomenon that describes the abrupt loss of knowledge of previously learned 
tasks as information relevant to the current task is incorporated. We use a model-
based reinforcement learning agent and regularize its components to fight forgetting 
between different tasks. For example, one task is to drive on a sunny day while another 
task may be to drive in a rainy night. The agent should adapt to both scenarios after 
having seen them. Also, after having experienced and learned on the second task, 
performance of the first task should improve. Our work shows, that simply applying 
continual regularization methods is not sufficient to succeed in the overall control task.

DNN specific Safety Concern:

Environm
ent / Training Strategies

Different weather settings in CARLA in which we train and evaluate our agent. 

A general overview of our used architecture. Our agent consists of four modules that are regularized independently to combat forgetting.



[ 36 ]  [ 37 ]

Motion Capture-based  
Virtual Reality Co-Simulation

Markus Rehmann, Michael Brunner, Cristóbal Curio, Reutlingen University

Many current simulation environments suffer from limited and repetitive human 
animations. Using these unrealistic animations for model training may cause wrong 
predictions and reduced accuracy of human behavior models on more realistic data.
By combining motion capture and Virtual Reality, scene-relevant animations can be 
created in which the actor perceives and can interact with the virtual environment. 
Obtaining realistic human behavior models, which support autonomous systems  
in better understanding humans, largely benefit from scene-relevant interactions 

during the recording process.

DNN specific Safety Concern:

Environm
ent / Training Strategies

Co-Simulation outside view (left), Virtual Reality view (right) (© Markus Rehmann, Reutlingen University)
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Domain Shift Quantification 
using Activations 

Manuel Schwonberg, Indrani Sarkar, Nico Schmidt, CARIAD SE

Unsupervised Domain Adaptation (UDA) aims to adapt Deep Neural Networks (DNNs) to 
new domains by only accessing unlabeled target data. The proposed approaches focus 
on increasing the performance scores like the mIOU to report the increased adapta-
tion capability on the target domain. Little to no knowledge exist about the internal 
behavior and mechanism within the DNNs under domain shift. We propose to utilize 
distribution distances like Wasserstein or Frechet Inception Distance (FID) to quantify the 
domain shift between two domains in an unsupervised manner by only accessing their 
network activations. We find that the layers of the network are differently strong affected 
by the domain shift and that our metrics are not directly correlated with the mIoU.

DNN specific Safety Concern:

Environm
ent

Domain Shift Quantification using Activations (© CARIAD SE)
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SceneNeRF:  
3D Reconstruction of Real-World Scenes

Thies de Graaff, Deutsches Zentrum für Luft- und Raumfahrt e.V.

The generation of synthetic data samples for AI training and testing, as well as scenario-
based testing of entire automated driving functions requires a great variety of realistic 
virtual worlds. This work investigated the automated reconstruction of real-world scenes 
based on images and sparse point clouds, gathered from sensors attached to a vehicle.
Our approach is based on Neural Radiance Fields (NeRF) and incorporates different ideas 
into an overall architecture to be able to cope with large traffic scenes that involve highly-
dynamic traffic. Current results build a good foundation to be refined manually, reducing 
the overall human effort in creating virtual worlds.

DNN specific Safety Concern:

Environm
ent

Overall SceneNeRF architecture to reconstruct 3D scenes from real-world image data (© DLR)
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Environmental adaptation and 
self-attention in the context of 
unsupervised domain adaptation

Vinu Vijayakumaran Nair, Markus Rehmann, Michael Brunner, Cristóbal Curio, Reutlingen University

Simulations are ideal tools for generating large amounts of training data of challenging 
weather conditions, including novel mobility classes such as e-scooters. The effective-
ness of using simulated data for environmental adaptation with unsupervised domain 
adaptation needs further investigation. The use of self-attention methods can improve 
model performance in the real domain, but in combination with unsupervised domain 
adaptation (UDA), it is possible to further improve performance. We investigated the 
environmental adaptation of an object detection model and the transferability of atten-
tion-based pose estimation models in the context of UDA on different datasets.
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Synthetic data generation Unsupervised domain adaptation

Highlights and overview of our approach, Synthetic data generation for various environmental conditions, Unsupervised domain adaptation for object detection and pose 

estimation tasks (© Reutlingen University)
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Detection of critical weather situations 
in scenario-based traffic simulations 
using optimization techniques

Daniel Grujic, Thies de Graaff, Günter Ehmen, Möhlmann, Deutsches Zentrum für Luft- und Raumfahrt e.V.

The performance of the neural network depends heavily on the training dataset. Since 
these training data sets usually can not cover all possible situations, there is always a risk 
to face a critical situation in the target domain where the detection rate of the network 
is too low. Therefore, we use an optimization-based approach to automatically identify 
critical simulation parameters that can lead to these critical situations. We apply this 
approach to the use-case “weather”. Here we want to find the set of weather parameters 
for a given scenario, where the neural network - the system-under-test - performs worst.
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Sketch of the scenario-based optimization workflow. (© Deutsches Zentrum für Luft- und Raumfahrt e.V.)
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Sensors
Sensors, as Lidar, Radar or Camera are used  
in transfer learning to identify objects in 
autonomous driving such as other vehicles, 
pedestrians, and traffic signs in the environment. 
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3D Detection and Tracking From LiDAR 
Point Clouds As a Pre-Processing 
Step for Active Learning

Florian Bogner, Norman Müller, Technical University of Munich

We base our detection and tracking method on Centerpoint, which we successfully 
adapt to the project‘s dataset. As a result, we are able to auto-label 3D bounding 
boxes and achieve consistent inter-frame tracking. As each detected instance includes 
a confidence, we can derive a metric for overall frame confidence to be used as an 
input to subsequent Active Learning. Especially regarding the fact that we exclusi-
vely worked with nuScenes training data, the qualitative results (depicted on the 
right) we were able to achieve on unlabeled project data are very promising.
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Qualitative evaluation of detection and tracking on project data (© TUM)
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Processing of vehicle sensor data

Dennis Neumann, Daniel Ruf, Roshan Muthaiya, Christian König, Luxoft GmbH

To be useful for training machine learning models, sensor data from test drives needs to 
be processed and labelled. In addition, privacy legislation demands all video data to be 
anonymized before further processing. This processing comprises a user interface where 
recordings can be viewed and frames for labelling can be selected. Here, metadata for each 
recording is shown along with the status of processing. Furthermore, a pipeline of sequen-
tial automatic operations is implemented, which consists of data ingestion, video creation 
and anonymization, automatic selection of key frames and extraction of data for labelling.
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Pipeline for automatic processing of sensor data (© Luxoft GmbH)

User interface for the keyframe approval (© Luxoft GmbH)Overview of the recording metadata (© Luxoft GmbH)
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Real Data Acquisition with Ground Truth 

Franz Andert, Joshua Niemeijer, Jörg Schäfer, Deutsches Zentrum für Luft- und Raumfahrt e.V.  
Silas Maile, DXC Luxoft | Tobias Wagner, Christian Witt, Valeo

To close existing gaps in publicly available datasets, KI Delta Learning created a 
complete new set of real data with multiple sensors and in different conditions. A 
Mercedes-Benz V-class van was equipped with a variety of cameras, LIDARs, RADARs, 
and other hardware. During the project, the car was driven in rural and urban areas 
in Germany and Italy. In Berlin and Braunschweig, measurements from a second DLR 
vehicle and from the stationary DLR test fields were included, and special maneu-
vers with mutual interaction of both cars were performed. We recorded 193 hours 
of data and about 7,000,000 sensor frames. 18,000 image and LiDAR samples were 
labeled for semantic and instance segmentation and 3D bounding box detection.
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Overtaking maneuver at Test Field Lower Saxony. Data Acquisition with two cars, and with object reference from road site cameras (© DLR)
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Auxiliary Task-Guided CycleGAN for 
Black-Box Model Domain Adaptation 

Michael Brunner, Markus Rehmann, Cristóbal Curio, Reutlingen University

Usually, existing DA methods are targeted at specific tasks and require access to the 
source model which is a major drawback when only a black-box model is available. 
We implemented a CycleGAN-based approach suitable for black-box source models. 
An auxiliary task is used to support the transfer of task-related information across 
domains. We have shown the effectiveness for the challenging task of 2D human pose 
estimation and compared our results in four different domain adaptation settings to 
CycleGAN and RegDA, a state-of-the-art method for unsupervised domain adaptation  
for keypoint detection.
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Left: Our method extends CycleGAN with additional auxiliary GAN and cycle consistency losses (highlighted red box). Right: A sample frame of our paired dataset showing 

three different domains. (M. Essich, M. Rehmann, and C. Curio, “Auxiliary Task-Guided CycleGAN for Black-Box Model Domain Adaptation,” in Proceedings of the IEEE/CVF Winter 

Conference on Applications of Computer Vision (WACV), Jan. 2023, pp. 541–550.)
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Bridging Domain Gaps in Lidar Perception

Jasmine Richter, Florian Faion, Di Feng, Thomas Nürnberg, Claudius Gläser, Robert Bosch GmbH

We explored three different approaches to reduce the delta sensor and delta 
weather domain gap in Lidar 3D object detection where some modify the 
features and others the input data. We showed that all of them have the poten-
tial to reduce the gap to a certain degree (5-15% relative performance gain in 
the target domain), but none was able to completely close it. In addition to 
bridging gaps, all approaches (and combinations of them) can be used as general-
purpose augmentation methods to increase robustness of detectors.
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Overview of the considered approaches to reduce the domain gap in Lidar 3D object detection. (© Bosch)
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Lidar Upsampling with  
Sliced Wasserstein Distance

Artem Savkin, Sebastian Wirkert, BMW AG 
Yida Wang, Nassir Navab, Federico Tombari, Technical University of Munich

Data-driven perception systems require data acquisition and annotation on scale
which is an expensive and inflexible process. We address the problem of sensor-tosensor
domain adaptation to avoid re-acquiring or re-annotating the data and focus
on the sensor setup with low- and high-resolution lidars and the task of upsampling.
Contrary to recent methods, the proposed technique demonstrated the 
ability to reconstruct fine scan patterns of lidar point clouds. It also showed 
improved lidar upsampling performance according to established metrics.
 
This work was published in the IEEE Robotics and Automation Letters
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Lidar upsampling results (middle) on KITTI val patches with input samples (top) and ground truth (bottom). (© IEEE)
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TransFuser: Imitation with 
Transformer-Based Sensor Fusion

Kashyap Chitta, Bernhard Jaeger, Zehao Yu, Katrin Renz, Andreas Geiger, University of Tübingen   
Aditya Prakash, University of Illinois Urbana-Champaign

How should we integrate representations from complementary sensors for autonomous 
driving? We propose TransFuser, a mechanism to integrate image and LiDAR represen-
tations using self-attention. Our approach uses transformer modules at multiple 
resolutions to fuse perspective view and bird‘s eye view feature maps. We experimentally 
validate its efficacy on a challenging new benchmark with long routes and dense traffic, 
as well as the official leaderboard of the CARLA urban driving simulator. Compared to 
geometry-based fusion, TransFuser reduces the average collisions per kilometer by 48%. 
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To safely navigate, an agent must understand the interaction between geometrically distant elements of the scene. Our TransFuser model integrates geometric and semantic 

information across multiple modalities via attention mechanisms to capture global context, leading to safe driving behavior in CARLA. (© University of Tübingen)
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HALS: A Height-aware Lidar 
Super-Resolution Approach 
for Autonomous Driving

George Eskandar, Sanjeev Sudarsan, Bin Yang, University of Stuttgart

Upsampling lidar pointclouds is a promising approach to gain the benefits of high 
resolution while maintaining an affordable cost. We introduce a novel lidar upsam-
pling model, HALS: Height-Aware Lidar Super-resolution. We exploit the observation 
that lidar scans exhibit a height-aware range distribution and adopt a generator archi-
tecture with multiple upsampling branches of different receptive fields. The branches‘ 
outputs are fused using confidence maps to model the branches‘ uncertainty. HALS 
regresses polar coordinates instead of spherical coordinates and uses a surface-normal 
loss for the first time in the training pipeline of lidar upsampling. Extensive experiments 
show that we achieve state-of-the-art performance on 3 real-world lidar datasets.
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When projected on a 2D spherical range image, a lidar scan exhibits a height-dependent range distribution. We find that far away objects (high range values) are usually 

represented in the upper part of the range image (Beam ID 0 corresponds to the highest row in the range image). Our model can better follow this distribution than 

previous approaches. Extracted cars from upsampled lidar scans demonstrate that the overall geometry and shape of foreground objects are better preserved.
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Active Learning

Active Learning
We acquire only a few, but the most important examples 
from a large stream of data for labeling, in order to 
improve the perception in automated driving.
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Active Learning On Dynamic Scenes 
Using Multi-View Consistency

Daniel Derkacz-Bogner, Norman Müller, Technical University of Munich

We extend an active learning pipeline using multi-view consistency to the domain of 
dynamic LIDAR sequences. Due to the missing correspondence between points in different 
timesteps we evaluate two point matching approaches, a nearest neighbor matching 
which only works on static scene parts and a 2D SIFT-LIDAR matching which is able to 
correspond static as well as dynamic objects. Our method on static scenes achieves 70% of 
the baseline performance while only using 20% of the data. Due to the limited amount of 
dynamic point matches, we could not achieve similar results on the dynamic scene setting. 
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Visualization of our 2D SIFT-LIDAR matching (©TUM)
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Active Learning based on a 
Taxonomy for Scene Description

Christian Witte, Syed Saqib Bukhari, Georg Schneider, ZF Group

Active Learning describes an iterative training paradigm that selects data samples to be 
annotated. We derive a taxonomy for describing an automotive scene and leverage domain 
information for the sampling process. This allows the Active Learning process to evaluate 
the network’s performance for particular scene descriptions and to sample challenging 
scenarios. Further, we introduce a weighting loss that also incorporates domain distri-
butions. Our experiments show that the selection solely based on domain information, 
even with the modified loss, yields no advantage over the random sampling baseline.
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Weighting Loss for Query Selection for Time of Day and Scene Domains (left), Active Learning Performance of a Object Detection Network for Single and Joint Domains (right)

(©ZF Group)



[ 70 ]  [ 71 ]

Active learning for semantic segmentation 
in realistic driving scenarios

Joshua Niemeijer*, Jörg P. Schäfer, Deutsches Zentrum für Luft- und Raumfahrt e.V. 
Sudhanshu Mittal*, Thomas Brox, University of Freiburg | * Indicates equal contribution

We show that the data distribution is decisive for the performance of the various active 
learning objectives proposed in the literature. Particularly, redundancy in the data, as 
it appears in most driving scenarios and video datasets, plays a significant role. We 
demonstrate that integrating semi-supervised learning with active learning can improve 
performance when the two objectives are aligned. Our experimental study shows that 
current active learning benchmarks for segmentation in driving scenarios are unrea-
listic since they operate on data already curated for maximum diversity. Accordingly, 
we propose a more realistic evaluation scheme in which the value of active learning 
becomes clearly visible, both by itself and in combination with semi-supervised learning.
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Left: Overview of how to chose the acquisition function and whether to apply semi supervised learning w.r.t. the redundancy of the dataset and the labeling budget in each 

active learning circle. Top Right: Illustration of the Mode Collapse problem on A2D2 data. Bottom Right: Results on our newly proposed realistic Benchmark for Active Learning.
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Consistency-based Active  
Learning for Semantic Segmentation

Stefan Matthes, fortiss GmbH | Sebastian Wirkert, BMW AG

We investigated active learning (AL) approaches that select data for labeling based on 
the consistency of the predictions of the model being trained. We propose to predict the 
semantic segmentations on the original and flipped images and rank by the number of 
mismatched pixels. We compare our method with uncertainty-based approaches under two 
regimes where either entire images or image regions are queried for labeling. As shown 
in the right figure, our proposed method performs equally well or better than previous AL 
approaches (measured in mIoU) in both acquisition regimes, yet is simple to implement. 
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Knowledge Transfer
The basic question in Knowledge Transfer is, 
how knowledge already learned by one network 
can be transfered to another network.
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SpatialDETR: 3D Object Detection  
from Multi-View Camera Images  
with Global Cross-Sensor Attention

Simon Doll, Richard Schulz, Lukas Schneider, Mercedes-Benz AG | Hendrik P.A. Lensch, University of Tübingen 
Markus Enzweiler, University of Applied Sciences Esslingen 

SpatialDETR is a transformer-based approach for robust and scalable single-shot 
3D object detection based on multi-view camera images. We use a DETR-like archi-
tecture with a 3D geometric positional encoding in combination with a spatially 
motivated, sensor-relative attention block. This leverages global context across 
sensor borders to detect objects present in the scene. Explicitly integrating the 
extrinsic calibration by computing the attention in a sensor-relative fashion allows 
to scale towards varying  sensor sets or different sensor mounting positions.
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Visualization of the spatially-aware global cross-sensor attention. Fusing the 3D information from the individual images per object hypothesis is supported by a geometric 

positional encoding (left) that incorporates the global 3D view direction of each pixel. (© Mercedes-Benz | Motional AD Inc.)
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Knowledge Transfer for Multitask 
and Downstream Tasks

Falk Heuer, Sven Mantowsky, Syed Saqib Bukhari, Georg Schneider, ZF Group

Computer Vision algorithms in autonomous driving can only be safe when created in a 
robust, versatile and redundant manner. In order to implement them efficiently on limited 
hardware, multitask learning may use a shared backbone and safe valuable computational 
resources by jointly using layers of the neural network. Additionally, symbiotic effects 
can aid learning and help the network converge better on each individual task. 
We train networks on the three tasks semantic segmentation, detection and human pose 
estimation and show that they can work together in an efficient manner. Additionally, we 
perform an analysis on various multitask setups and compare their joint performance to 
individual specialist networks.
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Architecture of the proposed network. (© ZF Group)

A multitask network predicting detections, segmentations 

and human pose estimation at the same time. (© ZF Group)
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Domain Generalization and (Continuous) 
Unsupervised Domain Adaptation

Jan-Aike Termöhlen, Tim Fingscheidt, Technische Universität Braunschweig

We investigated methods for domain generalization (DG) and (continuous) 
unsupervised domain adaptation (UDA). We showed that the best performance 
on multiple target domains can be achieved with UDA methods. Additionally, 
some UDA methods are even suitable for domain generalization when adapted 
to the right “representative” target domains/data and perform better than state-
of-the-art DG methods. Furthermore, we showed that with our continuous 
UDA it is possible to adapt online to the target domain during inference.
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USIS: Unsupervised  

Semantic Image Synthesis

George Eskandar, Mohamed Abdelsamad, Karim Armanious, Diandian Guo, Bin Yang, University of Stuttgart 
Shuai Zhang, University of Tübingen

Semantic Image Synthesis (SIS) is a subclass of I2I (I2) translation where a photorealistic 
image is synthesized from a segmentation mask. State-of-the-art methods depend on a 
massive amount of labeled data, while generic unpaired I2I frameworks underperform in 
comparison. In this work, we propose a new framework, Unsupervised Semantic Image  
Synthesis (USIS), as a first step toward closing the performance gap between paired and  
unpaired settings. USIS features a one-sided cycle-loss, a wavelet-based whole image  
discriminator, and a decoder on top of the discriminator to reconstruct the image and  
regularize the adversarial training. Moreover, we design a wavelet-based generator. USIS  
outperforms previous approaches in 3 challenging benchmarks.
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USIS can be trained on unpaired images and labels. It outperforms other unpaired frameworks by large margin in alignment, while delivering competitive image fidelity scores 

against supervised models. 
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CRAT-Pred: Vehicle Trajectory Prediction 
with Crystal Graph Convolutional Neural 
Networks and Multi-Head Self-Attention 

Julian Schmidt, Mercedes-Benz AG, Ulm University | Julian Jordan, Franz Gritschneder, Mercedes-Benz AG 
Klaus Dietmayer, Ulm University

Map information is not always available. We propose CRAT-Pred, a multi-modal 
and non-rasterization-based trajectory prediction model, specifically designed 
to effectively model social interactions between vehicles, without relying on map 
information. CRAT-Pred applies a graph convolution using edge features, and 
combines it with multi-head self-attention. Compared to other map-free approa-
ches, the model achieves state-of-the-art performance with a significantly lower 
number of model parameters. Additionally, the self-attention weights repre-
sent a measurable interaction score. The source code is publicly available.
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Top: Model Architecture. Bottom left: Comparison to other map-free approaches. Bottom right: Comparison to map free and map aware models. (© Mercedes-Benz AG)



Towards Unsupervised Open World Semantic Segmentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Semi-supervised domain adaptation with CycleGAN guided by downstream task awareness  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Attention-Based Self-Supervised Monocular Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Cycle-Consistent World Models for Domain Independent Latent Imagination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3D-Aware Image Synthesis with Generative Radiance Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Augmentation-based Domain Generalization for Semantic Segmentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Survey on Unsupervised Domain  Adaptation for Semantic Segmentation for Visual Perception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Self-Supervised Deep Representation Learning for Semantic Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

[ 86 ]  [ 87 ]

Sem
i- and Unsupervised Learning

Semi- and  
Unsupervised Learning
Re-training to adjust the pre-trained network to the 
domain of operation of the ego-car is conducted with 
only a few or without any labels of the target domain.



[ 88 ]  [ 89 ]

Towards Unsupervised Open  

World Semantic Segmentation

Svenja Uhlemeyer, Matthias Rottmann, Hanno Gottschalk, University of Wuppertal

Open world semantic segmentation involves identifying pixels belonging to unknown 
objects and learning novel classes incrementally. It is desirable to perform such 
an incremental learning task in an unsupervised fashion. Our proposed method 
consists of four steps: anomaly segmentation, i.e., detecting and localizing unknown 
objects (1), which we cluster by visual similarity (2). Based on these clusters we 
create pseudo ground-truth for novel classes (3), by which we expand the segmen-
tation model incrementally (4). In our experiments we demonstrate that, without 
access to ground-truth and even with few data, a deep neural network‘s class space 
can be extended by novel classes, achieving considerable segmentation accuracy.
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Top left: busses are annotated as unknown/novel class. Top right: The segmentation network assigns them to the known classes car, truck and train. Bottom left: the prediction 

quality estimation identifies one bus which may be badly predicted. Bottom right: this bus is recognized by the segmentation model after class-incremental learning. 

(© Cityscapes dataset)
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Semi-supervised domain 
adaptation with CycleGAN guided 
by downstream task awareness

Annika Mütze, Matthias Rottmann, Hanno Gottschalk, University of Wuppertal

Image-to-image (I2I) approaches can bridge domains on input level. Nevertheless, 
standard I2I approaches do not focus on the downstream task but rather on the visual 
inspection level. We therefore propose a “task aware” generative adversarial network 
in an I2I domain adaptation approach. Assisted by some labeled data, we guide the I2I 
translation to a more suitable input for a semantic segmentation network trained on 
synthetic data. This constitutes a modular semi-supervised domain adaptation based 
on CycleGAN. Our experiments involve evaluations on complex domain adaptation 
tasks and refined domain gap analyses using from-scratch-trained networks.
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Concept of our method: Stage a) – Training of a downstream task model on the synthetic domain. Stage b) – Training a CycleGAN based on unpaired data to transfer real data into 

the synthetic domain. Stage c) – We freeze the downstream task network and tune the generator with the help of a few labeled data points by guiding it based on the loss of the 

downstream task network (© University of Wuppertal)
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Attention-Based Self-Supervised 
Monocular Depth Estimation

Sagar Hanagodimath, Marius Bachhofer, ZF Group

Self-supervised monocular depth estimation approaches allow estimation of 
Euclidean distances of the objects from camera using only a sequence of images 
and no groundtruth. We studied the impact of using different attention mechanisms 
at various resolutions in the model and their influence on the overall model 
performance on real-world data. Furthermore, we also document the usefulness of 
incorporating additional high level feature maps and initial depth maps to improve 
the quality of the supervisory signals leading to better depth prediction.
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High-level overview of the method (Source and target images from DDAD. © Guizilini, Vitor, et al. „3d packing for self-supervised monocular depth estimation.“ Proceedings of the 

IEEE/CVF conference on computer vision and pattern recognition. 2020.)
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Cycle-Consistent World Models for  
Domain Independent Latent Imagination

Tim Joseph, FZI Forschungszentrum Informatik, Karlsruhe

For many tasks, such as autonomous driving, running an agent in the real 
world is prohibitively expensive and dangerous. For this reason, training the 
agent in a simulated environment before releasing it to the real world is neces-
sary. However, many agents fail in the real world because they are not able to 
handle the domain gap between the real and the simulated environment. 
We present an approach that projects (sensor) data from two different 
domains into a common latent space. From the information conveyed in 
the latent representations, we can train a reinforcement learning agent 
that learns to drive, independently of the given sensor data.
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The general architecture of our approach. Given two domains (e.g. RGB and Semseg) we can project to and from a common latent space. We can also forward predict in latent 

space to infer the future development of a scene.
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3D-Aware Image Synthesis with 
Generative Radiance Fields

Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao, Andreas Geiger, University of Tübingen

While 2D generative neural networks enabled high-resolution image synthesis, 
they largely lack an understanding of the 3D world and the image formation 
process. To address this problem, 3D-aware generative adversarial networks 
combine 3D generators, differentiable rendering and adversarial training to 
synthesize novel images with explicit control over the camera pose and,
potentially, other scene properties like object shape and appearance.

DNN specific Safety Concern:
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3D-aware generative adversarial networks combine 3D generators, differentiable rendering and adversarial training to synthesize novel images with explicit control over the 

camera pose. Here, we show generated voxel grids. Note that the model is only trained with posed images and does not require multiview supervision. 

(© University of Tübingen)
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Augmentation-based Domain 
Generalization for Semantic Segmentation

Manuel Schwonberg, CARIAD SE | Fadoua El Bouazati, University of Wuppertal   
Nico Schmidt, CARIAD SE | Hanno Gottschalk, University of Wuppertal

Unsupervised Domain Adaptation (UDA) and domain generalization (DG) are two research 
areas that aim to tackle the lack of generalization of Deep Neural Networks (DNNs) towards 
unseen domains. While UDA methods have access to unlabeled target images, domain 
generalization does not involve any target data and only learns generalized features 
from a source domain. We systematically study the in- and out-of-domain generaliza-
tion capabilities of simple, rule-based image augmentations like blur, noise, color jitter 
and many more. On the challenging synthetic-to-real domain shift between Synthia and 
Cityscapes we reach 39.5% mIoU compared to 40.9% mIoU of the best previous work.
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mIoU of different DG approaches in comparison with augmentation-based domain generalization (© CARIAD SE)
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Survey on Unsupervised Domain  
Adaptation for Semantic Segmentation 
for Visual Perception

Manuel Schwonberg, CARIAD SE | Joshua Niemeijer, DLR 
Jan-Aike Termöhlen, Technical University Braunschweig | Jörg P. Schäfer, DLR | Nico Schmidt, CARIAD SE  
Hanno Gottschalk, University of Wuppertal | Tim Fingscheidt, Technical University Braunschweig

The bad generalization of Deep Neural Networks to new, unseen domains is a major 
problem on the way to a safe, large-scale application because manual annotation of 
new domains is costly. Methods are required to adapt DNNs to new domains without 
labeling effort: unsupervised domain adaptation (UDA). We present an overview of the 
current state of the art in this field of research. We categorize and explain the different 
approaches for UDA. We also present a quantitative comparison of the approaches.
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Taxoynomy of Unsupervised Domain Adaptation Approaches (© CARIAD SE, TU Braunschweig, DLR)
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Self-Supervised Deep Representation 
Learning for Semantic Segmentation

Manuel Schwonberg, Nico Schmidt, CARIAD SE

Self-Supervised learning (SSL) methods aim to tackle the issue that Deep Neural 
Networks (DNNs) require large amounts of human-annotated data. The overall aim of 
this investigation is the evaluation of different self-supervised pretext tasks for auto-
motive semantic segmentation and major influencing factors in comparison with the 
supervised ImageNet pre-training baseline. We evaluated a wide range of pretext tasks 
for semantic segmentation but none of them was capable to compete with super-
vised ImageNet pre-training. However, when including strong augmentations into the 
pre-training an significant improvement over random initializationwas observed. 
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Self-Supervised Pre-Training for Semantic Segmentation (© CARIAD SE)
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Training Strategies

Training Strategies
To obtain robust performance of neural networks, 
training is essential. There are many different strategies 
how to train neural networks. Contributions of the 
category Training Strategies investigate which strategies 
to be used for best results under given conditions.
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PlanT:  Explainable Planning Transformers 
via Object-Level Representations

Katrin Renz, Kashyap Chitta, Otniel-Bogdan Mercea, A. Sophia Koepke, Zeynep Akata, Andreas Geiger,  
University of Tübingen

We propose PlanT, a novel approach for planning in the context of self-driving that uses 
a standard transformer architecture. PlanT is based on imitation learning with a compact 
object-level input representation. On the Longest6 benchmark for CARLA, PlanT outper-
forms all prior methods (matching the driving score of the expert) while being 5.3× faster 
than equivalent pixel-based planning baselines during inference. Furthermore, we propose 
an evaluation protocol to quantify the ability of planners to identify relevant objects, provi-
ding insights regarding their decision-making. Our results indicate that PlanT can focus 
on the most relevant object in the scene, even when this object is geometrically distant.

DNN specific Safety Concern:
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PlanT can drive safely in urban environments and in addition we can visualize on which vehicles the decision was based on. Vehicles with the highest relevance score are marked 

with a red bounding rectangle. We show examples for successful matching of relevance score and intuition (green frames) and failures (red frames). (© University of Tübingen)
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Automated Detection of Label Errors 
in Semantic Segmentation Datasets

Matthias Rottmann, Marco Reese, University of Wuppertal

We present a method and a benchmark for the detection of label errors in semantic 
segmentation datasets [1]. For the detection, we utilize deep learning and uncertainty 
quantification. If a predicted segment is a false positive w.r.t. the ground truth while our 
uncertainty estimate signals high confidence, then we review this finding. We studied the 
efficiency of our method on our benchmark in detail and found plenty of label errors in 
state-of-the-art computer vision datasets. 

[1] Rottmann, Matthias, and Marco Reese. „Automated Detection of Label Errors in Semantic 
Segmentation Datasets via Deep Learning and Uncertainty Quantification.“ Proceedings 
of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2023.
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Label Errors found in the datasets Pascal VOC (top) and Cityscapes (bottom). In each subfigure, the left panel shows our detection and the right hand panel the ground truth
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Severity of Catastrophic Forgetting in 
Object Detection for Autonomous Driving

Christian Witte, Syed Saqib Bukhari, Georg Schneider, ZF Group

Our work aims to illustrate the severity of catastrophic forgetting for object detection  
for class- and domain-incremental learning. We propose four hypotheses, as we  
investigate the impact of the ordering of sequential increments and the underlying data 
distribution of AD datasets. Further, the influence of different object detection architec-
tures is examined. The results of our empirical study highlight the major effects of 
forgetting for class-incremental learning. Moreover, we show that domain-incremental 
learning suffers less from forgetting but is highly dependent on the design of the 
experiments and choice of architecture.
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Class-incremental (a) and Domain-incremental (b) Learning for Object Detection and for the BDD100K Dataset (© ZF Group)
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MGiaD: Multigrid in all dimension. 
Efficiency and Robustness by Coarsening 
in Resolution and Channel Dimensions

Antonia van Betteray, Matthias Rottmann, Karsten Kahl, University of Wuppertal

Current deep neural networks (DNNs) for image classification are made up of 1000 million 
learnable parameters. Despite their high classification accuracy these networks are 
heavily overparameterized. Active research in recent years in terms of using multigrid 
inspired ideas in DNNs have shown that on one hand a significant number of weights 
can be saved by appropriate weight sharing and on the other that a hierarchical struc-
ture in the channel dimension can improve the weight complexity to linear. Utilizing 
these findings, we introduce an architecture that establishes multigrid structures in all 
relevant dimensions, contributing a drastically improved accuracy-parameter trade-off.
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Accuracy-parameter trade-off of MGiaD models trained on CIFAR-10. The group size is fixed and multigrid 

parameters vary. Corresponding ResNet and MgNet as well as MGIC as benchmarks
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Improving Replay-Based Continual Semantic 
Segmentation with Smart Data Selection

Tobias Kalb, Porsche Engineering Group GmbH

Replay has proven to be effective in reducing forgetting for Continual Semantic 
Segmentation. The most common sample strategy for Replay is random selection, 
which can result in unstable results. Therefore, we investigate the influences of 
various replay strategies for semantic segmentation and evaluate them in class- and 
domain-incremental settings. Our results show that effective sampling methods 
help to decrease the representation shift in early layers and the task recency bias, 
which are both a major cause of forgetting in domain-incremental learning.

DNN specific Safety Concern:
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Fine Tuning Random Replay Selective Replay

Top: Representational similarity (CKA) between activations of all layers (horizontal axis) before and after incremental training. 

Bottom: Confusion Matrix after Incremental Training. Note the miss-classification for non-reoccurring classes of S2 and the improved accuracy after employing selective replay
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Causes of Catastrophic Forgetting in  
Class-Incremental Semantic Segmentation

Tobias Kalb, Porsche Engineering Group GmbH

We study the causes of catastrophic forgetting in Class-Incremental Semantic Segmenta-
tion, answering how it manifests itself in the hidden representations of the network and 
how the background class both causes severe forgetting and decreases activation drift. 
Using representational similarity techniques, we demonstrate that forgetting manifest 
itself in deeper layers of the networks by assigning previous discriminating features for the 
previous classes to the background class or visually related classes. However, re-appearing 
classes mitigate activation drift in the encoder even when they are labelled as background. 
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By using layer stitching (upper left) at specific layers, we measure the relative mIoU of the stitched network to measure the activation drift.  Our results (upper right) show that 

deeper layers are the main causes of forgetting. The predictions of the stitched networks (bottom) show that the old classes are assigned to the background class in later layers.
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Embedded Systems
AI systems are trained and executed in the lab on powerful hardware. 
However, when used in a vehicle, they must function with very 
limited resources, especially computing speed and memory.
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Analyzing and optimizing AI  
for embedded applications

Domenik Helms, Adrian Osterwind, Arunachalam Thirunavukkarasu,  
Deutsches Zentrum für Luft- und Raumfahrt e.V.

When deploying Artificial Neural Networks on embedded AI, one faces resource restrictions. 
Because of this it is useful knowing the resource requirements of a neural network before 
training and deploying to optimize beforehand. This is why we worked on a prediction 
methodology for the final execution time of a neural network.If one on the other hand 
already has a functioning network which does not meet these requirements, optimizations 
have to be performed while keeping training at a minimum. We thus worked on tensor 
compression, which aims to reduce the size of a matrix while keeping the result of the 
operation the same. Since the compression has many parameters an automated parameter 
search based on a network architecture search heuristic was also implemented.
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Tensor compression to allow for the delta between a training server and a target device (© Unsplash Inc., Pixabay GmbH)
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Interpretable Pruning

Sven Mantowsky, Syed Saqib Bukhari, Georg Schneider, ZF Group 

Pruning is a technique to remove less important neurons/filters from a model, making 
it more efficient while preserving or improving performance. This process usually is 
non-transparent for the user and is hardly interpretable. ZF has faced this problem 
and developed a method that combines pruning and interpretability, called Inter-
pretable Pruning. Using heatmaps generated by Deep Taylor Decomposition, the user 
can understandably evaluate which filters contribute the most to the predictions. The 
method generates a ranking based on these heatmaps and the user can determine the 
number of filters to be removed based on the ranking. We have tested this method with 
both classification and object detection. With the object detector SSD and the PASCAL 
VOC dataset we could achieve a compression rate of 40%, with the classifier VGG16 and 
the CIFAR100 dataset a rate of over 70%.
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Representation of the heatmaps of different layers used by the Interpretable Pruning method (note the decreasing resolution with increasing network depth). (© ZF Group)
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Accelerating and Pruning CNNs for 
Semantic Segmentation on FPGA

Manoj Vemparala, Alexander Frickenstein, Lukas Frickenstein, BMW AG | Nael Fasfous, Pierpaolo Mori,  
Saptarshi Mitra, Technical University of Munich

We establish an end-end deployment pipeline for semantic segmentation using 
channel pruning and HW model (See Figure). We formulate the channel pruning 
as search problem using genetic algorithm, where redundant filters are pruned 
based on layer-wise compression ratios and a magnitude-based heuristic. 
Proxy metrics, such as operation count (OPs), does not always guarantee tangible 
improvements on measured hardware estimates. In our results the Hardware Aware 
pruning outperforms OPs based pruning both in latency and compute complexity  
at equal mIoU.
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Real World Robustness
AI systems are trained in the lab on previously recorded 
or artificially generated data. In actual use in the vehicle, 
however, unexpected and unknown situations may arise.
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A Benchmark and a Baseline for  
Robust Multi-view Depth Estimation

Philipp Schröppel, Artemij Amiranashvili, Thomas Brox, University of Freiburg 
Jan Bechtold, Robert Bosch GmbH

We introduce the Robust Multi-View Depth Benchmark that is built upon a set of public 
datasets and allows evaluation in depth-from-video and multi-view stereo settings on 
data from different domains. We evaluated recent approaches and found imbalanced 
performances across domains. Further, we considered a third setting, where the objective 
is to estimate the corresponding depth maps with their correct scale. We could show 
that recent approaches do not generalize across datasets in this setting. To resolve this, 
we present the Robust MVD Baseline model for multi-view depth estimation, which is 
built upon existing components but employs a novel scale augmentation procedure.
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The Robust Multi-View Depth Benchmark evaluates robust multi-view depth estimation on arbitrary real-world data. As a proxy it defines test sets based on multiple 

diverse existing. This simulates an open-world scenario where it is always possible to encounter scenarios not covered by the training data. (© University of Freiburg)
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Unsupervised Detection of 
Abnormal Driving Behavior

Julian Wiederer, Julian Schmidt, Arij Bouazizi, Ulrich Kreßel, Mercedes-Benz AG 
Vasileios Belagiannis, Friedrich-Alexander-University Erlangen-Nürnberg

Human intuition allows to detect abnormal driving scenarios in situations they never 
experienced before. Like humans detect abnormal situations and take counter-measures 
to prevent collisions, self-driving cars need anomaly detection mechanisms. We propose 
the R-U-MAAD benchmark for unsupervised anomaly detection in multi-agent trajectories. 
To this end we combine a replay of real-world trajectories and scene-dependent abnormal 
driving in the simulation. We learn a probability distribution of the normal driving from the 
training sequences without labels, and afterwards detect anomalies in low-density regions. 
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Two stage detection of driving anomalies. 1st Stage. Extract agent-centric feature vectors with a spatio-temporal graph encoder (STGAE) from the given traffic scene. 

2nd Stage. Compute the anomaly score as the similarity between the feature vector the training data using a Kernel Density Estimation (KDE). (© Mercedes-Benz AG)
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Impact of Data Anonymization 
of Semantic Segmentation 

Jingxing Zhou, Porsche Engineering Group GmbH | Jürgen Beyerer, Fraunhofer IOSB and KIT

For the development of machine learning-based driver assistance systems and highly 
automated driving functions, training data play a significant role in ensuring machine 
learning algorithms generalize well on real driving scenarios. However, before camera 
images save on a server, license plates and faces of individuals should be anonymized 
first due to data privacy regulations. Nevertheless, the impact of using anonymized data 
on the performance of machine learning algorithms remains unclear. Our work aims to 
evaluate the impact of anonymization on the task of semantic segmentation using diverse 
neural network architectures, a range of input image resolutions, and different anonymi-
zation patterns. We observe statistically significant effects of anonymizing image data on 
model performance and investigate methods for mitigating segmentation precision loss.
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The pipeline of our evaluation setup. Neural networks with different backbones and decoders are trained with identical training setup using diverse 

anonymization patterns. The segmentation images from ResNet 18 based FCN network are shown as examples. Images are anonymized using image resynthesis.
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