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Zero-shot robustness to distribution shifts

Goal: Build a model that handles low-level 
distribution shifts between training and test 
data faithfully. 
Zero-shot robustness: The model should be 
robust to such changes without observation of 
the actual distribution shift. 
Avoid drop of in-distribution performance.

Typical low-level shifts: 
• Noise, blur, contrast changes
• Fog, rain, sand, snow

Approach

Observation: Corruptions affecting the low-
frequencies of the images (noise, blur) require 
different network regularization than 
corruptions that affect the low-frequencies 
(contrast, brightness). 

à Train a low-frequency and a high-frequency 
expert and combine them as a mini-ensemble. 

High-frequency expert:
• Trained with Gaussian noise and blur
• TV-regularization of first-layer feature map

Low-frequency expert:
• Trained with contrast augmentations

Results on ImageNet

• Best corruption error of all existing ResNet-
50 approaches.

• Excellent trade-off between in-distribution 
performance (clean error) and out-of-
distribution performance (corruption error). 

Results on Real-world corruptions

The DAWN dataset comprises real-world 
distribution shifts not seen during training. 
Tested by changing the backbone of Faster-
RCNN.

• Particularly good with Sand and Snow

Compatible with adaptation of batch 
statistics (Schneider et al.)
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Figure 1. Test samples with rain from the DAWN dataset 
© DAWN dataset (Kenk & Hassaballah)
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Figure 2. Fourier spectra of three corruptions used for augmentation
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Figure 3. Test samples with sand and snow from the DAWN dataset 
© DAWN dataset (Kenk & Hassaballah)
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