
KI Delta Learning is a project of the KI Familie. It was initiated and
developed by the VDA Leitinitiative autonomous and connected driving and
is funded by the Federal Ministry for Economic Affairs and Climate Action.

www.ki-deltalearning.de @KI_Familie KI Familie

Partners External partners

For more information contact: 
domenik.helms@dlr.de

Goals
Develop methodologies to reduce the 
resource requirements on AI, when running on 
embedded Systems. 

Prediction
Predict the hardware execution time of an AI 
early in the design and training phase of the AI 
so that the AI designer can optimize for these 
constraints. 

Results
A prediction methodology, returning quick and 
accurate hardware timing estimates directly 
inside Tensorflow or PyTorch. A methodology 
to reduce the size of the AI tensors with only a 
minimal impact onto the overall accuracy of 
the AI.

Optimization
Apply mathematical transformations to the 
tensors of the AI layers to reduce their size 
and thus memory footprint and execution 
time.

Em
bedded System

s

Analyzing and optimizing AI 
for embedded applications

Domenik Helms, Arunachalam 
Thirunavukkarasu, Adrian Osterwind

Figure 1: General Toolchain. First is the MONNET Characterizer (the
result of this work), which creates a Tensorflow-Keras description of
the neural network. This network is compiled using the OpenVINO
toolchain and using this toolchain characterized on the Neural
Compute Stick 2

Figure 2: Description of the Convolutional 2D operation.

Figure 3: Preparation of the characterization process. A layer must be
characterized without a „real“ network surrounding it. This leads to
inaccuracies in the measured execution time due to optimizations and
caching in the network compilation

Figure 4: Result of the execution time prediction. Most results stay
within 20% error. Exceptions are DenseNet201 and Xception. The former
has a layer which repeats often within the network, which is badly
characterized. The latter has many Separational Convolutional2D
layers, which we characterized less than Convolutional2D layers

Figure 6: Basic principle of Tucker Decomposition. A Convolutional 2D 
layer can be approximated by one core tensor of size a*b*c and three
factor matrizes along each direction with the core tensor size and the
original tensor size along the corresponding axes.

Figure 8: Results of the Tensor Compression NAS on AlexNet compared
to SOTA filter NAS method. Tensor compression results in smaller
networks often wih with little loss in accuracy. Filter NAS can
sometimes result in smaller networks, but takes a longer time to reach
such a result which is not always guaranteed

Figure 7: Tucker decomposition NAS cycle. First a Tucker 
decomposition is done using default values. Afterwards the network is
shortly trained again on the original dataset (fine tuning)
Afterwards the results are evaluated regarding size and accuracy and 
from this new parameters for the tucker decomposition are generated

Figure 5: Sweep for different Conv2D layer combinations. it shows a non-linearity for certain parameter combinations. While the regular jumps could
be predicted with a metaheuristic, the areas where the execution time increases and decreases suddenly cannot be reliably predicted


