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Goals

Develop methodologies to reduce the
resource requirements on Al, when running on
embedded Systems.

Prediction

Predict the hardware execution time of an Al
early in the design and training phase of the Al
so that the Al designer can optimize for these
constraints.
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Figure 1: General Toolchain. First is the MONNET Characterizer (the
result of this worR), which creates a Tensorflow-Keras description of

the neural networR. This networR is compiled using the OpenVINO
toolchain and using this toolchain characterized on the Neural
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Figure 2: Description of the Convolutional 2D operation.
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Figure 3: Preparation of the characterization process. A layer must be
characterized without a ,real” network surrounding it. This leads to
inaccuracies in the measured execution time due to optimizations and
caching in the network compilation
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Figure 4: Result of the execution time prediction. Most results stay
within 20% error. Exceptions are DenseNet201 and Xception. The former
has a layer which repeats often within the networR, which is badly
characterized. The latter has many Separational Convolutional2D
layers, which we characterized less than Convolutional2D layers

Results

A prediction methodology, returning quick and
accurate hardware timing estimates directly
inside Tensorflow or PyTorch. A methodology
to reduce the size of the Al tensors with only a
minimal impact onto the overall accuracy of
the Al.

Optimization

Apply mathematical transformations to the
tensors of the Al layers to reduce their size
and thus memory footprint and execution

time. %
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Figure 6: Basic principle of Tucker Decomposition. A Convolutional 2D
layer can be approximated by one core tensor of size a*b*c and three
factor matrizes along each direction with the core tensor size and the
original tensor size along the corresponding axes.
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Figure 7: Tucker decomposition NAS cycle. First a Tucker
decomposition is done using default values. Afterwards the networR is
shortly trained again on the original dataset (fine tuning)

Afterwards the results are evaluated regarding size and accuracy and
from this new parameters for the tucker decomposition are generated
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Figure 8: Results of the Tensor Compression NAS on AlexNet compared
to SOTA filter NAS method. Tensor compression results in smaller
networRs often wih with little loss in accuracy. Filter NAS can
sometimes result in smaller networks, but takes a longer time to reach
such a result which is not always guaranteed
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Figure 5: Sweep for different Conv2D layer combinations. it shows a non-linearity for certain parameter combinations. While the reqular jumps could
be predicted with a metaheuristic, the areas where the execution time increases and decreases suddenly cannot be reliably predicted
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