
KI Delta Learning is a project of the KI Familie. It was initiated and
developed by the VDA Leitinitiative autonomous and connected driving and
is funded by the Federal Ministry for Economic Affairs and Climate Action.

www.ki-deltalearning.de @KI_Familie KI Familie

Partners External partners

For more information contact: 
katrin.renz@uni-tuebingen.de

• We consider the task of planning in an 
autonomous driving stack

• Planning is often done as a rule-based 
system 

• We propose a learned planner

Training Strategies
PlanT:  Explainable Planning 
Transformers via Object-Level  
Representations

Katrin Renz, Kashyap Chitta, 
Otniel-Bogdan Mercea, A. Sophia Koepke, 
Zeynep Akata, Andreas Geiger
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Task Results

Results

Figure 3: PlanT results (© University of Tübingen)

Architecture

Figure 4: PlanT Architecture (© University of Tübingen)

Explainability

Figure 5: PlanT attention (© University of Tübingen)

Figure 1: Driving Pipeline (© University of Tübingen)

Rule-based planning

End-to-End models

Learned planner: PlanT
Best of both worlds

Motivation

Hard to scale
Interpretable

Not interpretable

Scales with data

• We train a standard transformer encoder from scratch
• The model is trained with a loss on future positions of the ego vehicle and the 

other vehicles

• Scaling dataset and model improves 
performance

• Expert level performance

• We add a perception module 
to the driving stack

• With the full model we obtain state of the 
art on the longest 6 benchmark

• Visualization of attention weights to show 
the most important object

• Temporarily more consistent than the 
CNN-based method + also takes 
geometrically distant objects into account 

Code

Check out our 
paper and code


