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Abstract
The predictive performance of any deep 
learning-based environment perception 
model for autonomous driving is partially 
governed by the quality of the underlying 
dataset. Systematic problems with the dataset 
and the respective labels can have a huge 
impact on the internal representation of the 
feature landscape the model infers from the 
ingested data. We discovered that state-of-
the-art uncertainty estimation methods 
provide a basis for identifying and dealing 
with problematic label definitions. We 
furthermore developed a lean method on 
robustness against noisy labels using an 
hierarchical abstraction loss. We suggest that 
it can be applied to different domain shifts 
present in the data.

Uncertainty Estimation in Deep Learning
• Softmax output tends to be overly 

confident [1] à Bayesian methods [2] to 
quantify uncertainty 
• Assign distributions to the network’s 

weights instead of point estimates 
• à Sampling-based approaches simulate a 

non-deterministic behavior
• Data uncertainty with logit sampling [3]
• Model uncertainty with Monte Carlo 

Dropout [4]

Detection of Label Problems
• Filter incorrect classifications with low 

uncertainty to get hints about not well 
learned class representations

• Example (Figure 1): two bicyclists, which are 
partially predicted as “person”, since the 
CNN learns local features the uncertainty is 
high on the borders but low for the person 
on the bicycle à Issues with the label 
hierarchy

Label Hierarchy for Robustness 
against Label Noise
• Increase robustness against confusion of 

labels by introducing a label hierarchy
• à Allows the model to learn abstractions 

and implicitly express uncertainties about 
predictions

Approach:
• Add meta-classes to the model 

predictions (Figure 2)
• Alter ground truth labels: parent classes 

are partially correct (multi-class)

Results (Figure 3):
• Model predicts meta-class instead of leaf 

node for bicyclists, surrounding is still 
correctly predicted with leaf nodes

• Whole instance is predicted coherently
• Uncertainty lowers with higher hierarchy 

levels

Validation and Application 
to Other Scenarios
• Approach can be applied to other cases 

with noisy labels (e.g. adverse weather)
• Qualitative analysis required for further 

method refinement (boost performance 
and calibration through optimization of 
the loss function and the hierarchy)

Environm
ent / Training Strategies

Robustness Against Noisy Labels 
Through Uncertainty Estimation for 
LiDAR-based Semantic Segmentation
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Figure 1: Scene with two bicyclists (left: original label, mid: prediction, 
right: uncertainty), Setup: SalsaNext [6] with MCD on the SemanticKITTI 
dataset [5]
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Figure 2: Label hierarchy for the SemanticKITTI dataset
(original labels are leaf nodes, meta classes are added accordingly)
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Figure 3: Scene with two bicyclists (left: hierarchical prediction, right: 
uncertainty), Setup: SalsaNext [6] without MCD but with hierarchy on 
the SemanticKITTI dataset [5]
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