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Task
Reuse of modules and hierarchical structures in 
convolutional neural networks (CNNs) to achieve 
a more favorable accuracy-parameter trade-off.
• CNNs are build from 10-100 M of weights:

risk of overparameterization
• Number of weights vs. accuracy
• How to increase the model capacity without 

requiring many weights?
• Exploit connection of multigrid methods (MG) 

and CNNs to get structured reduction

Approach
• Multigrid methods [1] are efficient hierarchical 

solvers for systems of (non-) linear equations
• CNNs and MG share the same properties [2]
• Exploit similarities for structured reduction [3]
• Sparsity in the resolution dimension: 

appropriate weight sharing, MgNet [2] (fig. 3)
• Sparsity in the channel dimension: 

Hierarchical structure, reduces weight count 
quadratic → linear (fig. 1)[4][3]

MG and CNNs
• MG are iterative methods to solve 𝐴𝑢 = 𝑓 :

𝑢!"# = 𝑢! + 𝐵 𝑓 − 𝐴𝑢 𝑖 = 0,1, …

• The (unknown) error propagation 

𝑒!"# = 𝑖 − 𝐵𝐴 𝑒!

• Resembles ResNet-block [5], yields motivation 
for reusing weights

• BUT: iterative methods are characterized by 
slow convergence 
→ Restrict problem to coarser grid /resolution 
via pooling operations ( Π, 𝑅)

• CNNs: data 𝑓 and features 𝑢 are related by 
(non-)linear mappings 𝐴, 𝐵

• Iterative scheme on every resolution level as 
often as required (smoothing) (fig.2)

• Restrict residual 𝑟$$"# = 𝑅$$"#𝑟$
• Direct solving and correction of fine grid 

solution
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Architecture
• 𝐴 and 𝐵 can be both shared, achieving a 

significant reduction (factor 4)
• Still the number of weights scale quadratically 

to the number of channels

• Replacing 𝐴 and 𝐵 with grouped convolutions 
is not sufficient due to lack of channel 
interaction
→ Another hierarchical structure in the 
channel dimension build from grouped 
convolutions to restore channel interaction

• Number of channels is successively reduced 
until fully coupled convolutions are feasible

• Fully coupling corresponds to direct solving in 
multigrid

• On each channel level: smoothing with shared 
weights (SiC) (fig. 1)

• Successively increasing the number of 
channels, updating each level solution

Results

• Small group size: lesser weights
• High number of fully coupled channels:

good accuracy

Training Strategies

MGiaD: Multigrid in all dimensions. 
Efficiency and robustness by coarsening
in resolution and channel dimensions
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Figure 2: Data-feature mappings on resolution level 𝑙, followed by 
coarsening of data and residual to resolution level 𝑙 + 1

Figure 1: SiC-block (© University of Wuppertal)

residual

ResNet-block

Figure 3: left: no weight sharing (ResNet); middle: sharing 𝐴, right: 
sharing both 𝐴 and 𝐵 (MgNet), each block corresponds to iteration 
step aka smoothing (© University of Wuppertal)

Figure 4: Models trained on Cifar-10, different group size, varying 
number on fully coupled channels, channel scaling


