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Overview

• Human drivers recognise abnormal driving 
behavior and react accordingly to avoid 
critical situations.

• Similar, automated vehicles (AVs) need 
anomaly detection capabilities.

Objective and Contribution
We propose a method for unsupervised multi-
agent anomaly detection.

Threefold Contribution:
1) Unsupervised traffic scene encoding.
2) Kernel density estimation (KDE) for anomaly 

detection.
3) Dataset in Realistic Urban settings for 

Multi-Agent Anomaly Detection, R-U-MAAD

Method: STGAE + KDE

• STGAE for multi-agent trajectory 
representation learning.

• KDE for density estimation of the normal 
trajectories.

• Anomalies occur in low-density with the 
anomaly score 𝛼=𝑝 ̂(𝑧).

Qualitative Results

Paper & Code
For more details on
our papers check our 
github projects!

Hybrid-Simulation for Dataset Generation
We replay real-world scenarios in the 
simulation (blue vehicles + map) and manually 
control a target vehicle (red) to drive diverse 
abnormal scenarios. All scenes are manually 
annotated 

→ R-U-MAAD

Ablation: N-Agent Highway Scenario
• Simulate highway scenarios to analyse the 

dependency on the number of agents.
• Our method remains stable with the # of 

agents,   𝑁 = 2, 4 .
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Figure 1: Concept Overview. (© Mercedes-Benz AG)
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Figure 2: Method Overview. (© Mercedes-Benz AG)
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Figure 6: Qualitative 
Results on our R-U-
MAAD test scenarios. We 
observe the increasing 
anomaly score in the 
abnormal scenarios 
(last minute turn, cancel 
turn). The anomaly 
score remains low for 
the normal lane change 
on the right. 
(© Mercedes-Benz AG)
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Figure 3: Data Generation Pipeline including the hybrid 
simulation and the data annoation. (© Mercedes-Benz AG)

Normal Scenario: 
Left Turn.

Abnormal Scenario: 
Ghost driving.

Abnormal Scenario: 
Aggressive Shearing.

Figure 4: A normal and two abnormal scenarios from the
R-U-MAAD dataset. (© Mercedes-Benz AG)

# Agents Model AUROC ↑ AUPR-Abnormal ↑

𝑁 = 2 STGAE 69.08 39.28
𝑁 = 2 STGAE + KDE 92.34 66.75
𝑁 = 4 STGAE 52.42 17.95
𝑁 = 4 STGAE + KDE 89.41 60.52

Figure 5: Ablation results. (© Mercedes-Benz AG)
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