

Improving Replay-Based Continual Semantic Segmentation with Smart Data Selection

Tobias Kalb

Introduction

Replay has proven to be effective in reducing forgetting for Semantic Segmentation. The most common sample strategy for Replay is random selection, which can result in unstable results. Our works aims to develop data selection strategies to minimize catastrophic forgetting and eliminate performance variance with current random selection.

Results Domain-Incremental

Evaluation after training on BDD, CS (Buffer size = 64)

Method	mloU _{BDD} [%]	mloU _{CS} [%]	mloU _{Avg.} [%]	
Offline Training	57.2	65.0	61.1	
Fine Tuning	29.6	67.0	48.3	
Random	44.0	68.4	56.2	
Mean Entropy	45.0	<u>69.4</u>	<u>57.2</u>	
Max Loss	25.4	66.4	45.9	
Representation	<u>45.5</u>	69.0	<u>57.2</u>	
Gradients	44.9	68.6	55.1	
Ambivalent Cls.	42.2	67.6	54.9	
Div. Class Bal.	41.7	68.6	55.1	
Testsets	BDD100k	Cityscapes	Both	

Methods

Class	Balanc	ed Buffer
Liasses Classes Classes		Classes Classes Replay Buffer

Evaluation

• the higher the similarity score, the better the method is suited to prevent forgetting

Results Class-Incremental

Evaluation after training on S1, S2, S3 (Buffer size = 64)

Method	mloU _S 1[%]	mloU _{S2} [%]	mloU _{S3} [%]	mIoU _{All} [%]
Offline Training	82.6	65.3	79.2	69.0
CIL [1]	71.3	44.4	82.4	55.8
Random	76.0	49.7	81.7	57.4
Mean Entropy	75.5	43.1	<u>80.9</u>	57.2
Max Loss	76.3	48.3	82.8	57.6
Representation	73.0	52.7	<u>81.7</u>	57.4
Gradients [2]	74.1	49.5	80.0	56.6
Ambivalent Cls.	75.0	49.6	81.5	57.4
Div. Class Bal.	77.0	58.7	81.6	60.5
Testset	S1	S2	S3	All

[1] Klingner, Marvin, et al. "Class-incremental learning for semantic segmentation re-using neither old data nor old labels." 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC). IEEE, 2020.

[2] Aljundi, Rahaf, et al. "Gradient based sample selection for online continual learning." Advances in neural information processing systems 32 (2019).

Conclusion

- Replay stabilizes internal representations
- Domain-Inc. most important
 Representational Diversity / Entropy
- Class-Inc. class-balancing most important
- +9.0 mIoU for non re-occurring classes over random selection
 Strategic data selection

 is essential when classes are not balanced
- Data selection is important especially for small memory sizes

For more information contact: Tobias.Kalb@porsche-engineering.de

KI Delta Learning is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

Supported by:

on the basis of a decision by the German Bundestag

www.ki-deltalearning.de

🈏 @KI_Familie

in KI Familie