

Augmentation-based Domain Generalization for Semantic Segmentation

Manuel Schwonberg, Fadoua El Bouazati, Nico M. Schmidt, Hanno Gottschalk

Motivation

- Domain Generalization (DG) has no access to any target domains and needs to learn generalized features on a source domain
- Style randomization and instance normalization and whitening are used
- We propose to simple utilize rule-based image augmentations for DG

Results: Full Factorial Experiments

Out-of-Domain Generalization Cityscapes				
	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	35.9869	0.4995	72.04	0.0000
GB	0.3800	0.5585	0.68	0.5060
RRain	-1.1100	0.5585	-1.99	0.0643
ET	1.2850	0.5585	2.30	0.0352
CLAHE	0.0100	0.5585	0.02	0.9859
RRC	0.3850	0.5585	0.69	0.5005
GB:RRain	-0.0150	0.4995	-0.03	0.9764
GB:ET	-0.7075	0.4995	-1.42	0.1758
GB:CLAHE	-0.4350	0.4995	- <mark>0.8</mark> 7	0.3967
GB:RRC	-0.7700	0.4995	-1.54	0.1427
RRain:ET	-0.5600	0.4995	-1.12	0.2788
RRain:CLAHE	-0.2825	0.4995	-0.57	0.5795
RRain:RRC	-0.9175	0.4995	-1.84	0.0849
ET:CLAHE	-0.7850	0.4995	-1.57	0.1356
ET:RRC	-0.6250	0.4995	-1.25	0.2288
CLAHE:RRC	-0.6025	0.4995	-1.21	0.2453

- we evaluate an extensive set of augmentations on the problem of syntheticto-real domain generalization
- we evaluate the best performing set of augmentations in a full factorial manner and statistically analyze their interactions

Approach

We choose a 2-step approach:

- 1. Evaluate stand-alone augmentations
- 2. Combine best performing augmentations in a full factorial manner and analyze their interactions

Geometric	Color	Texture	
Crop	Color Jitter	Gaussian Blur	
Hor. Flip	Brightness & Contrast	Gaussian Noise	
Cutout	Grayscale	Random Snow	
Elastic Transform	CLAHE	Random Rain	
Shift-Scale-Rotate		Random Fog	
		Random Sun Flare	

Figure 1: Augmentations for Step I-Experiments (© CARIAD SE)

Results: Stand-Alone Augmentation

Augmentation	CS I	CS II	Synthia II
Geo	metric		<u>h</u>
Resize	29.6	29.3	45.9
RandomCrop	35.7	35.4	60.3
RandomResizedCrop	36.3	35.8	61.9
RCrop + HFlip	33.7	33.3	60.8
RCrop + Cutout	34.3	33.6	60.7
RCrop + ElasticTransform	37.7	36.4	61.8
RCrop + ShiftScaleRotate	36.6	35.8	61.6
С	olor		
RCrop + Brightness/Contrast	35.0	34.2	61.2
RCrop + ColorJitter	35.0	34.2	61.2
RCrop + CLAHE	37.9	35.8	60.9
RCrop + Grayscaling	35.4	34.2	60.6
AutoAugment	34.8	33.3	60.1
Tex	ture		
RCrop + GaussNoise	33.9	32.5	60.8
RCrop + GaussBlur	37.9	37.0	60.7
RCrop + RandomFog	36.6	36.1	59.8
RCrop + RandomRain	36.8	34.8	60.3
RCrop + RandomSnow	35.5	34.5	60.3
RCrop + RandomSunFlare	34.0	31.7	60.1
RCrop + CannyEdge	34.4	33.7	60.0

Figure 4: Statistical Analysis of a quadratic model (© CARIAD SE)

- Combination of augmentations provide significant better out-of-domain generalization
- Mostly negative interaction factors due to similar augmentations effects
- Combination of gaussian blur and elastic transform provide best absolute performance
- Statistical significance is not as good as expected
- Higher degree of interaction also of interest for application

Results: SOTA Comparison

Method		Synthia
		to Cityscapes
Baseline (Ours)		29.3 (29.6)
RandomCrop (Ours)		35.4 (35.7)
IBN [19]		34.2
SW [21]		31.6
DRPC [23]		37.6
GTR [27]		39.7
RobustNet [20]	ResNet-101	37.2
FSDR [4]	-	40.8
AdvStyle [29]		37.6
WEDGE [28]		40.9
SAN&SAW [22]		40.9
RRCrop + ET (Ours)		37.8 (39.5)
Baseline (Ours)		39.6 (40.3)
RandomCrop	DAFormer	42.6
RRC,GB,CJitter		44.2

Figure 2: mIoU for stand-alone augmentations on Synthia and Ciytscapes (© CARIAD SE)

Backbone	lr	Synthia		
		to CS	to BDD	to Synthia
	0.0007	34.4	22.5	68.8
DAFormer	0.0005	38.8	24.2	70.6
	0.0001	42.5	31.1	70.1
	0.00008	40.7	29.3	69.6

Figure 3: learning rate dependency of generalization (© CARIAD SE)

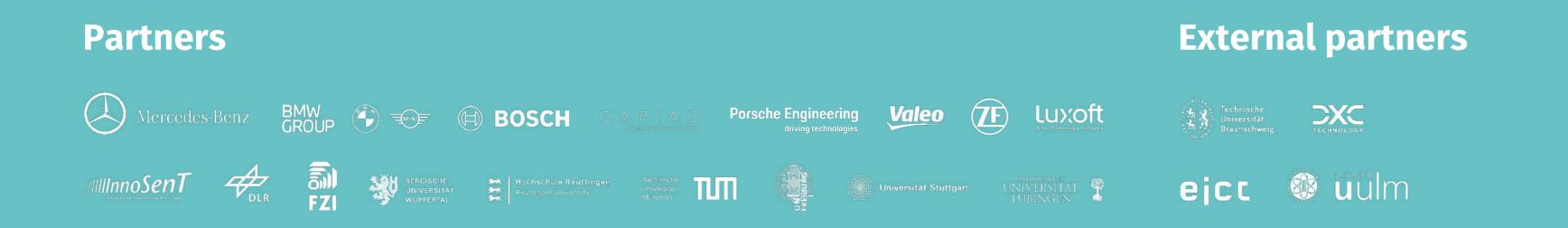

- Learning rate and random cropping cause significant improvement
- Stand-alone augmentation \rightarrow small gains

Figure 5: Comparison with State-of-the-Art approaches (© CARIAD SE)

- Augmentations perform competitive to state-of-the-art DG approaches
- Utilizing DAFormer all other benchmarks are clearly outperformed

Conclusions & Future Work

- Augmentations offer simple but competitive alternative to recent DG approaches
- More research necessary to better understand how augmentations DG
- Cross-dataset and cross architecture transfer is important for future work

For more information contact:

nico.schmidt@cariad.technology manuel.schwonberg@cariad.technology Hanno.gottschalk@uni-wuppertal

KI Delta Learning is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

www.ki-deltalearning.de

🏏 @KI_Familie

in KI Familie